TECHNICAL MANUAL

OPERATOR'S, ORGANIZATIONAL, DIRECT SUPPORT AND GENERAL SUPPORT MAINTENANCE MANUAL

TOPOGRAPHIC SUPPORT SYSTEM DRAFTING SUPPORT SECTION MODEL ADC-TSS-4
NSN: 6675-01-105-5754

This manual, together with TM 5-6675-316-14-2, supersedes TM 5-6675-316-14, 20 June 1983.

HEADQUARTERS, DEPARTMENT OF THE ARMY

HEADQUARTERS
DEPARTMENT OF THE ARMY
WASHI NGTON, D. C. , 14 April 1988

Oper ator's, Organizational, Di rect Support and General Support Maintenance Manual

TOPOGRAPH C SUPPORT SYSTEM DRAFTI NG SUPPORT SECTI ON MODEL ADC-TSS-4
NSN : 6675-01-105-5754
TM 5-6675-316-14-1, 7 J une 1985, is changed as follows:

1. Renove and insert pages as indicated bel ow. New or changed text material is indi cated by a vertical bar in the margin. An illustration change is indicated by a miniature pointing hand.

Renove pages Insert pages
1-19 and 1-20
1-19 and 1-20
2. Retain this sheet in front of manual for reference purposes.

By Order of the Secretary of the Army:
CARL E. VUONO
General, United States Army Chief of Staff

Official:

R.L. DILWORTH

Brigadier General, United States Army
The Adjutant General

DI STRI BUTI ON:
To be di stributed in accordance with DA Form 12-25A, Operator, Unit, Direct Support and General Support Maintenance requirements for Topographic Support System, Drafting Support Section (ADC-TSS-4).

HEADQUARTERS
DEPARTMENT OF THE ARMY
WASHINGTON, D.C., 19 September 1986

Operator's, Organizational, Direct Support and
General Support Maintelirce Manual
TOPOGRAPHIC SUPPORT SYSTEM
DRAFTING SUPPORT SECTION
MODEL ADC-TSS-4
NSN: 6675-01-105-5754
TM 5-6675-316-14-1, 7 June 1985, is changed as follows:

1. Remove and insert pages as indicated below. New or changed text material is indicated by a vertical bar in the margin. An illustration change is indicated by a miniature pointing hand.

Remove pages	Insert pages
$1 / i \mathrm{i}$	$\mathrm{i} / \mathrm{i} i$
$1-13$ and $1-14$	$1-13$ and $1-14$
$1-55$ and $1-56$	$1-55$ and $1-56$
$1-61$ through $1-64$	$1-61$ through $1-64$
$1-71$ and $1-72$	$1-71$ and $1-72$
$1-95$ and $1-96$	$1-95$ and $1-96$
$1-99$ and $1-100$	$1-99$ and $1-100$
$2-61$ and $2-62$	$2-61$ and $2-62$
$2-81$ and $2-82$	$2-81$ and $2-82$
$2-163$ and $2-164$	$2-163$ and $2-164$
$2-179$ and $2-180$	$2-179$ and $2-180$
$2-183$ and $2-184$	$2-183$ and $2-184$
$2-203$ and $2-204$	$2-203$ and $2-204$
$2-297$ and $2-298$	$2-297$ and $2-298$
$2-323$ and $2-324$	$2-323$ and $2-324$

2. Retain this sheet in front of manual for reference purposes.

By Order of the Secretary of the Army:

Official:

JOHN A. WICKHAM, JR.
General, United States Army
Chief of Staff

R. L. DILWORTH
 Brigadier General, United States Army The Adjutant General

DISTRIBUTION:
To be distributed in accordance with DA Form 12-25A, Operator's, Organizational, Direct Support and General Support Maintenance requirements for Topographic Support System, Drafting Support Section (ADC-TSS-4).

WARNING

H GH VOLAGE is used in this equi pnent. DEATH ON CONTACT or severe injury may result if personnel fail to observe safety precautions.

Do not be misled by the term LOW VOLTAG. Low vol tage can cause serious injury or death.

Test procedures requiring the operat or or mai ntenance personnel to investigate equi pment or rest ore casual ties with interlocks di sconnected or covers renoved may result in DEATH ON CONTACT if personnel fail to observe safety precautions.

Vol tages in switches and circuit breaker panels may result in DEATH ON CONTACT if personnel fail to observe safety precautions.

Fail ure to ground the section or equi pment may result in DEATH ON CONTACT if personnel fail to observe safety procedures.

For Artificial Respiration refer to FM 21-11.

WARNING

Dry cleaning sol vent, P-D.680, used to clean parts is potentially dangerous to personnel ai d property. Avoid-repeated and prol onged skin contact. Wear sol venti mper neable gl oves and eye/ face protecti ve equi pnent when usi ng sol vent. Do not use near open flame or excessi ve heat. Fl ash point of sol vent is $100^{\circ} \mathrm{F}$ to $138^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right.$ to $59^{\circ} \mathrm{C}$).

WARN NG

Rotating and spi nni ng equi pment nay snag loose cl othing, hai r or j ewel ry resulting in SEVERE PERSONEL IN URY.

WARN NG

Attempting to nove overwei ght or top heavy equi prent that is unsecured may result in SEVERE PERSONEL IN URY. Al ways have sufficient personnel and equi pnent to accom plish the task.

I NIRODUCTI ON

This manual is di vided into two vol unes:
Vol une 1, TM 5-6675-316-14-1 consi sts of Chapters 1 and 2.
Vol une 2, TM 5-6675-316-14-2 consi sts of Chapters 3 through 12, Appendi xes A through E, G ossary and I ndex.

The Appendi xes, \mathbf{G} ossary and Index in Vol une 2 are applicable to both vol unes.

IEADQUARTERS
DEPARTMENT OF THE ARM

Operator, Organi zational, Di rect Support and

 General Support Mai ntenance ManualTOPOGRAPH C SUPPORT SYSTEM
DRAFTI NG SUPPORT SECTI ON
MDDEL ADC-TSS- 4
NSN 6675-01-105-5754

REPORTING ERRORS AND RECOMMENDING IMPROVEMENTS

You can help improve this manual. If you find any mistake or if you know of away to improve the procedures, please let us know.Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms), or DA Form 2028-2 located in the back of this manual direct to: Commander, U.S. Army Troop Support Command, ATTN: AMSTR-MCTS, 4300 Goodfellow Boulevard, St. Louis, M063120-1798. A reply will refurnished directly to you.

TABLE OF CONTENTS

Page
CHAPTER 1 DRAFTI NG SUPPORT SECTI ON 1-1
Section I I nt roduction. 1-1
Section II Operating Instructions 1-11
Section III Operat or Mai ntenance 1-45
Section IV Organi zati onal Mai ntenance 1-53
Section V Di rect/General Support Mai nt enance 1-88
CHAPTER 2 COMPOSI NG MACH NE 2-1
Section I nt roduction. 2-1
Section IIOperating I nstructions2-74
Section III Operat or Mai nt enance 2-134
Section IV Organi zati onal Mai ntenance 2-140
Section V Di rect/General Support Mai ntenance 2-189

CHAPTER 1

DRAFTING SUPPORT SECTION

Section I INTRODUCTION

1-1. GENERAL INFORMATION.

1-1.1 Scope. Thi s manual contains operating and nai ntenance instructions for the ADC-TSS-04, Drafting Support Section, Topographic Support System (TSS). The purpose of the Drafting Support Section is to provide cartographic products to other TSS sections. The trailer chassis is covered in TM 5-2330-305-14, Oper at or, Organizational, Di rect Support and General Support Mai ntenance Manual, Topographic Support System Chassis, Semitrailer, ISO Contai ner Transporter. Repair parts and speci al tool s are Ii sted in TM 5-6675-316-24P, Organi zational, Di rect Support, and General Support Maintenance Repair Parts and Special Tool s List, Drafting Support Section, Topographic Support System Lubrication instructions are contai ned in LO 5-6675-316-12, Lubri cati on Order, Drafting Support Section, Topographi c Support System All authorized equi pment, supplies, and their locations for transport are shown in Location and Description of Najor Components of this manual.

1-1.2 Purpose of Equipnent. To provide a transportable facility for production of set type; anal ysi s of topographic products; production of preci si on drawings, grids, and masks; and pin regi stration.

1-1.3 Mai ntenance Forns and Records. Departnent of the Arny forns and procedures used for equi pnent nai ntenance will be those prescribed by DA Pam 738-750, The Army Mai ntenance Managenent System (TAMS).

1-1.4 Reporting Equi pment I mprovenents (El R's). If the Drafting Support Section needs improvenent, let us know Send us an ElR. You, the user, are the only one who can tell us what you do not like about your equi pnent. Let us know why you do not like the design or performance. Put it on an SF 368 (Quality Deficiency Report). Mail it to us at: U.S. Army Troop Support Command, ATTN ANSTR- QX, 4300 Goodf el I ow Bl vd, St Louis, MD 63120-1798. Ve will send you a reply.

1-1.5 Destruction of Material to Prevent Enemy Use. For infornation on destruction of naterial to prevent eneny use, refer to TM 750-244-3, Procedures for Destruction of Equi pnent to Prevent Enemy Use.

1-1.6 Preparation for Storage or Shi pment.

a. Perform your preparation for novenent procedures.
b. For admi ni strative storage of equi pment, refer to TM 740-90-1.

The chapters of this manual describe special shipping instructions for maj or components located in the section.
d. In the event this equi pnent must be renoved fromthe section for repai r or repl acement, contact your battalion for packing and shi pping instructions.

1-2. EQUIPMENT DESCRIPTION.

1-2. 1 Equi pment Characteristics, Capabilities, and Features.

a. Air and sea transportable.
b. Transportable cross-country capability when nounted on trailer chassis.
c. Controled internal envi ronment.

1-2.2 Speci al Consi derations.

Site must permit section to be level ed within $\pm 2^{\circ}$, be well drained, and provide adequate overhead conceal nent. Wboded areas and other obstacles must not i mpede novenent of transporters.
b. Dispersal of topographic sections is limited to the length of el ectric power transmission cable available for unit generators.

During site sel ection, avoid overhead power transmission lines to prevent danger from el ectric shock or el ect romagnetic interference.
d. Power is nornally supplied by 60 kW generators. Commerci al el ectric power should be used if it is compatible and available.

Cross-country capability of sections and transporters is limited. Rel ocation should be accomplished over hard-surfaced, all-weather roads whenever possible.

1-2.3 Location and Descri ption of Mar Components.
a. Roadsi de Exterior.

VAN BODY LOCK, Locks van body to trailer chassis.
AI R COND TI ONERS/ HEATERS. Two air conditioner/heater units for inter nal envi ronmental control .

LIFTI NG TI EDONN EYES. At tachnent point for lifting or tying down van body.
AI R CONDI TI ONER/ HEATER CONDENSER COVERS. Covers air conditioner/heater condenser to prevent water/air entering air conditioner/heater unit when in transport or storage.

A R VENT COVER. Covers ai r vent openi ng.
RETRACTABLE STEPS . Provi de access to roof.
EXHAUST FAN COVER. Covers exhaust fan openi ng.
LEVEL I NDI CATORS. I ndi cate van body inclination.
FOLDI NG LADDER. A lous access to ai r conditioners and top of van.
b. Curbsi de Exterior.

CARGO DOOR. Access for equi pment renoval /installation.
PERSONEL DOORS. Doors are $35.75 \mathrm{in} .(90.8 \mathrm{~cm})$ wide by $86 \mathrm{in}. \mathrm{(218.4} \mathrm{cm)} \mathrm{high}$. PERSONEL DOORMAYS. Doorways are 30.75 in. (78.1 cm) wide by 78.5 in (199.4 cm) hi gh.

LABEL PLATES. Provi de wei ght/ noment data.
POVER CABLE. Power cable is in 50 ft (15.2 m) sections. (Stored in trailer chassis storage box.)

CONECTI ON BOX. Contai ns terminals for ground cable, power cables, and tel ephone I i nes.

LADDER ATTACHMENT EYES. Attachnent poi nts for boarding I adder.
BOARD NG LADDERS AND HANDRA LS. Provi de access to van body.
c. Interior.

PERSONEL DOOR. Weatherproof, fitted with blackout switch.
BLACKOUT SWTCH Turns ceiling lights of f when activated.
FI RE EXTI NGUI SFER. Dry chemical fire exti ngui sher.
FI RST A D KT. Limited first aid supplies.
CARGO DOOR. Access for equi pment renoval/installation.
TRANSFORMER. Isol ation transformer that provi des constant vol tage for composing machi ne.

WALL STORAGE CABI NET: Storage.
FLUORESCENT CEI LI NG LAMP. White, two-l evel (high/low) overhead Ii ght.
EXHAUST FAN Provides ventilation. Fitted with lightproof louvers and weatherproof cover.

TELETYPE. Component of drafting machi ne.
BLACKOUT DOME LIGT. Red-I ensed, white-I ensed 12 V ac light actuated when blackout switch operates, or from external power.

DRAFTI NG MEASURING MACH NE. Aut onatic drafting and neasuring device.
MAGN FIER LAMP. Provi des illumination and magnification for light table work station.

SPLIT STAGE LIGT TABLE. Contai ns two illuminated surfaces and novable nounting assenbly for stereoscopic anal ysis.

WASTEPAPER BASKET. Storage for transport.
FI LI NG CABI NET. St orage.
A R CONDI TI ONERS/ HEATERS. I nternal envi ronnent al control.
EMERGENCY LIGTS. Battery-powered lighting actuated by power failure.
A R VENT. Permits filtered make- up air to enter van body.
FI RE EXTI NGU SFER. Dry chemi cal fire exti ngui sher.
STORAGE CABI NET. St orage
FOLDI NG CHA R. St orage for transport.
CORKBOARD. Vertical di spl ay board.
PI N REG STER BOARD. Al ines overl ays and graphics.

PAPER RACK. Storage for roll paper.
CI RCU T BREAKER PANEL. Circuit breakers with phase test indicat or.
SAFETY SWTCH Main power safety di sconnect switch.
GROND ROD. El ectrical ground for section.
RI FLE RACK Weapon storage.
CHA R. Storage for transport.
BLACKOUT CURTA N Li ght proof cover for personnel door.
MAP AND PLAN FI LING CABI NET. Storage for maps/topographic products.
ZOOM STEREOSCOPE. Storage for transport.
VACUMM CLEANER. d eani ng equi pment.
TOL K TS.
TI EDONW. Stored insi de storage cabi net when not in use.
DRAFTI NG, SCRI BI NG/ TRACI NG TABLE. I I I umi nated traci ng board. Turns over for drafting board.

DRAFTI NG CHA R. Adj ust able hei ght chai r.
TELEPHONE JACK. Communi cation terminal.
SEALI NG MACH NE. Used for appl ying adhesi ve wax.
COMPOSI NG MACH NE. Phot ot ypesetting machi ne transfers characters di splayed on CRT to photographic paper cassette for processing in separate section.

1-2.4 Equi pment Data - ISO Contai ner (Unnounted).

Di mensi ons	
Length	$33.66 \mathrm{ft}(10.26 \mathrm{~m})$
V'dth	$8 \mathrm{ft} \mathrm{(2.44} \mathrm{m)}$
Hei ght	$8 \mathrm{ft} \mathrm{(2.44} \mathrm{~m}$
Cubage	$2038 \mathrm{ft}^{\mathbf{3}}$ (57.7 m)
Connections	
Tel ephones	One tel ephone (threepost) connection
Power	20. 8 kW One 120/ 208 V, three-phase, four-wire connection and one 12 V dc connection
Ground	Ground I ug
Air Conditioner/Heater (Two Units)	
Cooling	$\text { 18, } 000 \text { Btu/ hr (} 5274 \text { W }$ Each
Heating	$\begin{aligned} & \text { 14, } 300 \text { Btu/ hr (} 4190 \text { W } \\ & \text { (Max) each } \end{aligned}$
Power Requi rements	$208 \mathrm{~V}, 60 \mathrm{~Hz}$, three-phase
Exhaust Fan	$289 \mathrm{ft}^{3} / \mathrm{min}$ ($8.18 \mathrm{~m}^{3} / \mathrm{min}$)
Air Vent	$289 \mathrm{ft}^{3} / \mathrm{min}\left(8.18 \mathrm{~m}^{3} / \mathrm{min}\right)$
Wei ght	
Gross (Contai ner and Chassi s)	24, 970 I bs ($11,323.90 \mathrm{~kg}$)
Tare (Contai ner Onl y)	13, $530 \mathrm{l} \mathrm{bs} \mathrm{(} 6135.86 \mathrm{~kg}$)

Length
Vidth
Hei ght
Cubage
Connections
Tel ephones

Power

Ground

Air Conditioner/ Heater (Tuo Units)
Cooling

Heating

Power Requi rements
Exhaust Fan
Air Vent

Wei ght

Gross (Contai ner and Chassi s)

Tare (Contai ner Only)
$13,530 \mathrm{Ibs}(6135.86 \mathrm{~kg})$

1-3. TECHNICAL PRINCIPLES OF OPERATION,
1-3. 1 General. The operation of maj or components located within the van are expl ai ned in the appropriate chapter for that equi pnent.

1-3.2 El ectrical System

GROND ROD. Used to ground van body.
GROND CABLE. Used with ground rod.
Cl RCU T BREAKER PANEL . Contains vol tage indicator, phase nonitor, and circuit breakers.

DOME LI GHTS. White-I ensed, 12 V dc lights powered fromexternal source. Separately swi tched and fused.

EXHAUST FAN Pl ug-in fan. Separately fused.
FLUORESCENT CEI LING LAMPS. Two-I evel (high/low) overhead lights with blackout override switches.

EMERGENCY LIGTS. Battery powered. Activated by power loss.

AI R COND TI ONER/ HEATER. Air conditioner and el ectrical heater powered by threephase, $208 \mathrm{~V}, 30 \mathrm{amp}$ current.

BLACKOT LI GTIS. Red-I ensed, 12 V ac lights actuated when blackout switch operates.
UALL OTLETS. Provide grounded outlets for portable or plug-in equi pment.
PONER CABLES. Power input (120/208 V ac and 12 V dc).
1-3.3 Viring Diagram A foldout wing diagram is provided at the end of this manual.

1-3.4 Ventilation Svstem

Exhaust fan exhausts air. Repl acenent air flows into the section through the air vent filter. Recirculating air is filtered as it enters the air conditioners/ heaters. From the air conditioners/heaters, it flows through the ceiling vents and into the section.

NOTE

Detailed description of air conditioner/heater operation is contai ned in TM 5-4120-367-14, Operator, Organizational, Direct Support, and General Support Mai ntenance Manual, Ai r Conditioner, Horizontal, Compact, 18, 000 Btu/hr Cooling, and TM 5-4120-367-24P, Organi zational, Di rect Support, and General Support Mai ntenance Repair Parts and Speci al Tool s Li st (lncluding Depot Maintenance Repair) for Air Conditioner, Horizontal, Compact, 18, 000 Bt u / hr (5274W).

Section II OPERATING INSTRUCTIONS

1-4. DESCRIPTION AND USE OF OPERATOR'S CONTROLS AND INDICATORS.

Control or I ndi cator	Function
Bl ackout Override Switches	Turn off illumination when doors are opened.
Air Vent	Permits make-up air to enter as requi red.
Air Conditioner/Heater Control Units	Permit sel ection of air conditioner or heater node of operation and temper at ure.
Phase, Frequency, and Vol tage I ndi cator	Monitors el ectrical power, phase, frequency, and vol tage.
Level I ndi cators	Used to l evel section.

1-5. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES.

Before You Operate. Always keep in mind the WARNINGS and CAUTIONS. Perform your before (B) PMCS.
b. While You Operate. Always keep in mind the WARNINGS and CAUTIONS. Perform your during (D) PMCS.
c. After You Operate. Be sure to perform your after (A) PMCS.
d. If Your Equipment Fails to Operate. Troubleshoot with proper equipment. Report any deficiencies using the proper forms. See DA Pam 738-750.

1-5.1 PMCS Procedures.

PMCS are designed to keep the equipment in good working condition by performing periodic service tasks.
b. Service intervals provide you, the operator, with time schedules that determine when to perform specified service tasks.
c. The "Equipment is Not Ready/Available If" column is used for identification of conditions that make the equipment not ready/available for readiness reporting purposes or denies use of the equipment until corrective maintenance is performed.
d. If your equipment fails to operate after PMCS is performed, immediately report this condition to your supervisor.
e. Perform weekly as well as before operation if. You are the assigned operator and have not operated the item since the last weekly or if you are operating the item for the first time.
f. Item number column. Item numbers are assigned in chronological ascending sequence regardless of interval designation. These numbers are used for your "TM Number" column on DA Form 2404, Equipment Inspection and Maintenance Worksheet in recording results of PMCS.

Interval columns. This column determines the time period designated to perform your PMCS.
h. Item to be inspected and procedures column. This column lists functional groups and their respective assemblies and subassemblies as shown in the Maintenance Allocation Chart (Appendix B). The appropriate check or service procedure follows the specific item to be inspected.
i. Equipment is not ready/available if: column. This column indicates the reason or cause why your equipment is not ready/available able to perform its primary mission.
j. List of tool s and naterials requi red for PMCS is as follows:

t e m	Quantity
Wire Brush	1 ea
6 in. Adj ustable Wrench	1 ea
Fl at Tip Screndri ver	1 ea
Vacuum Cl eaner	1 ea
Cheesecl oth (Item 6, Appendix E)	ar
General Pur pose Detergent (Item 9, Appendix E)	ar
Paint (Itens 17, 17A and 17B Appendix E)	ar
Paint Brushes	ar

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES

NOTE

If the equi pment must be kept in continuous operation, check and service only those itens that can be checked and serviced without di sturbing operation. Make the compl ete checks and services when the equi prent can be shut down.

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B - Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D - During	M - Monthly	S - Semiannually	
A - After	Q - Quarterly	BI - Biennially	

A. After		
ITEM NO.	IN. TER- VAL	ITEM

Inspect Exterior - Cont

WARNING

To prevent death or serious injury, do not handle or clean power cable or connectors when cable is connected to power source.

B
3. Inspect power cable assembly for dirt, or damaged connectors.

Connector damaged.
a. Wipe cable insulation with clean, dry cloth to remove dirt.
b. Clean corrosion from terminals.
wing nut

VAN BODY - Cont

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B - Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D - During	M - Monthly	S - Semiannually	
A - After	Q - Quarterly	BI - Biennially	

1
6. Inspect air conditioner/heater drain tube to be sure tube is positioned as shown. Check for breaks and crimps in hose and check connections for damage or leakage.

B / W 7. Inspect exhaust fan cover and air vent covers to be sure they are not blocked or clogged. Clean as required. Clean screen with vacuum cleaner as necessary.

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & \mathbf{B} \\ & \mathbf{D} . \\ & \mathbf{A} . \end{aligned}$	Before During After	W - Weekly AN : Annually (Num M - Monthly S - Semiannually Q Quarterly BI - Biennially 	Hundreds of Hours
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	$\left\|\begin{array}{l} \text { IN- } \\ \text { TER- } \\ \text { VAL } \end{array}\right\|$	ITEM TO BE INSPECTED PROCEDURE	For Readiness Reporting, Equipment Is Not Ready/ Available if:
1		VAN BODY - Cont	
		Inspect Exterior - Cont	
	$\left.\begin{gathered} B / D / \\ A \end{gathered} \right\rvert\,$	10. Inspect front and rear van body locks to be sure locks are fully engaged.	Lock disengaged.
	Q	11. Inspect gaskets on personnel doors for leaks or damage.	
	W	11.1 Inspect hinges for proper placement of hinge pins	Missing hinge pins.
	Q	12. Clean and paint blistered, pitted, or flaking areas and bare metal spots in accordance with instructions contained in TM 43-0139, Painting Instructions for Field Use.	
2		Inspect Interior.	
	B / D	1. Test emergency lights by pressing test button.	Emergency lights do not light.
	W	2. Inspect power cords and cables to be sure wires are not kinked, cut, or cracked.	Wires or cables are cracked or
	W	3. Inspect plug connectors to be sure all plug connectors are tight and firmly seated. Tighten if necessary.	cut.
	D	4. Inspect for burned out light bulbs and fluorescent lamps. Replace as required.	
	W	5. Inspect walls, ceiling, and floor for holes, open seams, or signs of seepage or leaks.	Leaks are present.
	D	6. Check storage cabinets for broken hinges, latches, and locks.	Hinge, latch, or lock is broken.
	$\begin{gathered} B / M / \\ A \end{gathered}$	7. Inspect fire extinguishers. Be sure security seals are not broken.	Fire extinguisher is missing or seals are broken.

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B. Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D. During	M - Monthly	S - Semiannually	
A. After	Q - Quarterly	BI - Biennially	

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & \mathbf{B} . \\ & \mathbf{D} . \\ & \mathbf{A} . \end{aligned}$	Before During After	W - Weekly AN - Annually M - Monthly S - Semiannually \mathbf{Q} - Quarterly Bi - Biennially	(Number) - Hundreds of Hours
ITEM NO.	IN. TERVAL	ITEM TO BE INSPECTED PROCEDURE	For Readiness Reporting, Equipment Is Not Ready/ Available If:
2	Q	VAN BODY - Cont	
		Inspect Interior - Cont	
		9. Inspect light traps.	
		a. Turn on fluorescent lamps (high level). b. Close entrance doors. Have exhaust fan and air vent open. Inspect for light leakage through vents.	Light leaks are present.
		c. Place light switches $0 N$; blackout override switches OFF. d. Open door and make sure internal lights go off.	B1ackout system is inoperable.
	A	10. Inspect/clean interior.	
		WARNING	
		Death or serious injury may occur if wet or damp cloth is used to wipe or clean energized equipment, power cords, or cables.	
		CAUTION	
		Do not sweep interior. Dislodged dirt or dust will ruin optical, electronic, and photographic equipment and supplies.	
		a. Wipe vertical and horizontal painted surfaces with cleaning cloth moistened with solution of general purpose detergent and fresh water until soil is removed from painted surfaces.	

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 1-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

1.6. OPERATION UNDER USUAL CONDITIONS. Operation of the Drafting Support Section consists of activation of power after the section has been located at the operation site and 12 V dc power disconnected.

1-6.1 Preparation for Use.
a. Procedures for Leveling.

CAUTION

Trailer-mounted section must be on surface that is approximately level to avoid unnecessary stress or twisting of chassis when-section is-leveled.

NOTE

- Snow or ice should be removed from under leveling foot plate before attempting to level section.
- Sand, soft ground, or mud requires that shoring or scrap material be placed under leveling foot plate to increase surface area and prevent sinking into surface.
- Be sure that air suspension is deflated as indicated in TM 5-2330-305-14.

(1) Deflate air suspension in accordance with TM 5-2330-305-14.
(2) Approxi nately level trailer chassis by raising or I owering I anding gear.
(3) Move handle from secured location and swing out.
(4) Pull crank handle on each I eveling jack all the way out and engage. There are tuo positions when handle is engaged. Fully out is high speed. Partially out is low speed.
(5) Lower each leveling jack by turning crank to right at high speed until foot plate just contacts ground.

(6) Station personnel to have a clear view of level indicators at both front and rear of section.
(7) Observe level indicators to determine which end and side must be raised.

CAUTION

Do not attempt to level section by lifting at diagonal corners, or frame will be twisted.

NO

(8) Raise low end by extending both leveling jacks at low end. Use low speed.

(9) Raise low side by extending both leveling jacks at low side.

NOTE

(10) Pull I eveling crank handles away fromtrailer chassis, and lower crank handle to stowed position.
b. Procedures To Activate Section.

(1) Remove boarding ladders and handrails from rear of section.
(2) Renove handrails from I adders.

(3) Mbunt ladders at personnel doors and secure with locking pins.

(4) Mbunt one handrai I on each I adder.
(5) Enter section and be sure safety switch, nain circuit breaker, and all equi pnent power supply switches are of f.

WARN NG

Death or serious injury may result from connecting power cable to section bef ore groundi ng.

(6) Renove ground rod, slide hammer, and ground cable from section.

NOTE

Apply a thin filmof grease to threaded ends of rods bef ore driving into ground. This will permit easy di sassenbly upon renoval from ground.

- Bottom ground rod must be numbered or identified so that it will al ways be the first rod driven into the ground.
- These instructions suppl ement TC 11-6, Grounding Techni ques.

(7) Select an area as close to power entry panel as poss ible to install ground rod. Then assenble the first ground rod and coupling to the si de hammer rod.

CAUTION

Do not allow ground rod to rotate when renoving the slide hamer rod. Rods must be kept screned together to make a good el ectrical ground.

NOTE
Bef ore dri ving ground rod be certain that rods neet inside coupl ing. Be sure collar is handtight agai nst coupling.
(8) Pl ace slide hammer on hamer rod end, and dri ve ground rod into ground. Renove slide hammer rod. Attach slide hamer rod to a new section of ground rod, and repeat procedure until only 12 in (30.5 cm) of the third rod is above ground.
(9) Renove slide hammer and hamer rod, and place in section.
(10) Secure ground cable clamp and ground cable to ground rod.

WARNING

To prevent death or serious injury, do not handle or cl ean power cable or connectors when cable is connected to power source.

NOTE

The section must be properly grounded before power is connected. If it is not possi ble to drive the three sections of ground rod fully into ground, the rods may each be dri ven into the ground separatel y and connected in series. If it is impossible to drive a ground rod, a suitable alternative ground must be found; such as a buried netal water-pi pe. See TC 11-6, Grounding Techniques for additional instructions.

(11) Connect ground cable to ground Iug with wing nut.

CAUTION

Be sure safety switch is off bef ore connecting power cable to avoid equi prent danage.
(12) Firmy connect the power cable to the power receptacle.

(13) Turn on safety switch.

CAUTION

Do not energize section if incorrect phase lamp lights. Danage to equi prent nay result.
(14) Check vol tage and frequency as follous:
(a) Push phase test switch. Observe correct phaselamp lights.
(b) Turn phase switch to A

CAUTION

Voltage must be between 110 and 120 , and frequency must be at $60 \pm 1 \mathrm{~Hz}$ on each leg before turning on main circuit breaker or danage to equi pnent nay result.
(c) Read vol tage on meter.
(d) Read frequency on scal e.
(e) Repeat for positions B and C on phase switch.

(15) Set nain circuit breaker ON

NOTE
Thi s step must be accomplished if section is placed in operation in darkness, fog , mi st, or under blackout conditions.
(16) Cl ose blackout curtains, if requi red.
(17) Turn on circuit breakers in following order:
(a) I ndi vi dual I i ghti ng.
(b) Curbside and roadsi de ai r conditioners/ heaters.
(c) Curbsi de and roadsi de receptacl es.

(18) Connect tel ephone lines to corresponding interior binding posts.
(19) Check bl ackout switches.
(20) Plug in energency lighting and turn switch to READY.
(21) Fully deflate air shocks until composing machine, split-stage light table, and drafting and measur ing machi ne rests on top of air shocks.

1-6. 2 Preparation for Movenent.
a. I nventory equi prent and supplies.

b. Install tiedowns in tiedown sockets.
c. Secure authorized equi pnent in proper containers or as specified by appropriate chapters.
d. Secure straps and renove slack from tiedowns.
e. Inflate shock absorbers.
(1) Renove al l val ve caps.

CAUTION

To prevent danage to equi pnent or air shocks duri ngt ransportation, inflate air shocks correctly. Do not exceed $90 \mathrm{psi}(620 \mathrm{kPa})$ for the composi ng machi ne, and drafting and measuring machine. Do not exceed 70 psi (483 kPa) for the split-stage light table.
(2) Connect air hose to valve.

(3) Inflate each mount until top of di aphragmis level as shown.
(4) Rei nstal l val ve caps.

WARNING
Death or serious inj ury may occur if power cable is disconnected while power is on.
f. Turn equi pnent switches OFF.
g. Turn main circuit breaker OFF.
h. Turn safety switch OFF.
i. Have power cable di sconnected at power supply end. Then di sconnect power cable from receptacle. Put cable in storage box" on-trailer chassis.
j. Turn emergency light switch OFF.
k. Di sconnect tel ephone cables from power entry panel.

CAUTION
To prevent loss of rod or thread danage, do not al low ground rod to rotate and unscrew when renoving the slide hamer rod.

1. Renove ground rod with slide hamer, and put ground rods, couplings, and slide hamer inside section. Cl ean threads on each ground rod before storing.

NOTE
Be certain exhaust fand air vent doors are securely cl osed.
m . Rei nspect secti on interior for loose equipment and close all vents.
n . Cl ose section. Secure and lock all personnel doors and cargo door.

NOTE
Be sure ai r conditioner/heater covers are down and secured.

0 . Renove handrails from boarding ladders.
P. Renove boarding Iadders and insert handrails into back of ladders.
q. Secure ladders to back of section.
r. Fully extend I anding gear.
s. Retract leveling jacks.
t. Visually inspect van exterior to be sure all equipment and covers are secured.

1-6.3 Operating Instructions on Decal s and Instruction PI ates.

CAUTION

FOR SAFE OPERATION
 SEE TM FOR PROPER
 INTERNAL AND EXTERNAL GROUNDING

> CAUTION TO START UNIT ON "COOL" MODE AT O' AMBIENT JUMPER LACO SWITCH (S-5)

EQUIPMENT LOAD ON MOUNT MUST BE WITHIN LOAD RATING. EQUIPMENT MOUNTING SURFACE MUST BE, OR ADAPTED TO BE FLAT AND OF SIZE TO COVER ENTIRE OUTSIDE DIAMETER OF MOUNT.

EQUIPMENT LOAD ON MOUNT MUST BE WITHIN LOAD RATING.
EQUIPMENT MOUNTING SURFACE MUST BE, OR ADAPTED TO BE FLAT
AND OF SIZE TO COVER ENTIRE OUTSIDE DIAMETER OF MOUNT.

1-7. OPERATION UNDER UNUSUAL CONDITIONS.

NOTE

Danage to contai ner permitting light leaks, water, or dirt entry must be temporarily repai red using available material on hand. Mai ntenance personnel will conduct permanent repai rs; however, crew must mai ntain operational capability of section.

1-7.1 Operation in High Wind or Storm Conditions.

a. Rel ocate section if trees or structures present hazard.

SUGGESTED METHOD OF ANCHORING
THE SECTION IN HIGH WINDS

b. Secure section corners at lifting eyes to deadmen or substantial objects.
c. Renove all loose objects fromarea.

1-7.2 Operation in Cold Weather.

a. The operation of the internal equi pment is performed within envi ronnentally controlled conditions; however, in extreme cold, the nai n power supply cable and grounding cable, will becone hard, brittle, and difficult to handle. Be careful when connecting or di sconnecting the cables so that kinks and unnecessary loops will not result in permanent danage.
b. Make certain that connections and cable receptacles on the outside of the section are free of frost, snow, and ice.
c. Wen section heaters are not operating or when the section is being transported, liquid consumable supplies may freeze, break their contai ners, then melt, and rui n equi prent or documents. Store these itens in an area to prevent equi pment and document damage.

1-7.3 Qperation in Extreme Heat. The operation of the internal equi pment is performed within envi ronmentally controlled conditions; however, during transportation or when air conditioning units are not operating, consumable supplies may suffer reduced shelf life, and internal components may have accelerated deterioration of gaskets, seal s, or insul ation.

1-7.4 Operation in Tropical Conditions. Fungi, mildew, or nold will form on and in equi pment, documents, and supplies if internal environmental control equi pment is not operating and outside heat and humidity are allowed to enter the section.

1-7.5 Oper ation in Desert Conditions. Dust grit, and sand will ruin supplies, equi pment, and documents. Extreme care must be taken to prevent dust, grit, and sand from entering the section. Air filters will be changed whenever airflow is restricted, and cleaning of section interior must be conducted more frequently than specified by PMCS schedul es.

1-7. 6 Emergency Procedures. There are no specific emergency procedures for operation of the section.

1-7.7 Emergency Means of Exit. In the event personnel are locked in the section, the tab may be turned to the eft until the bail on the padlock falls free. The door handle is now free to turn.

Section III OPERATOR MAINTENANCE

1-8. LUBRICATION INSTRUCTIONS.
a. Lubrication instructions for the Drafting Support Section are contained in LO 5-6675-316-12, Lubrication Order, Drafting Support Section, Topographic Support System The intervals and man-hours specified in the Lubrication Order are based on normal operations. During inactive periods, I ubrication periods nay be extended with adequate preservation.
b. Topographic equi pment and al optical equi pnent require special care in I ubrication. When a specified Iubricant is called for, substitutions are not authorized. M ni mum anounts of I ubricant are to be used and all excess Iubricant is to be imedi ately renoved. Spray Iubri cants must not be used in the vi ci nity of optical equi pnent unl ess optics are completel y protected. No I ubricant is to be appl ied unl ess a thorough cleaning is conducted first to renove dirt, dust, or abrasi ve naterial.
c. Be sure that you refer to the appropriate chapter bef ore any equi prent is stored after use, that the temperature has stabilized, and that lubrication required after use is accomplished.

1-9. TROUBLESHOOTING PROCEDURES.

a. The table lists the common nal functions which you nay find during operation or maintenance of the Drafting Support Section, or its components. You should performthe test/inspections and corrective actions in the order listed.
b. This nanual cannot list all nalfunctions that may occur, nor all test or inspections and corrective actions. If a mal function is not listed or is not corrected by listed corrective actions, notify your supervisor.

MALFUNCTI ON

TEST OR I NSPECTI ON

 CORRECTI VE ACTI ON1. NO ELECTRI CAL PONER TO SECTI ON

WARNING
Death or serious injury may result. Do not perform any el ectrical mai ntenance or make el ectrical connections or di sconnections at main power receptacle when power cable is energized.

Step 1. Observe vol tage and frequency for phases A, B, and C. Read 115 $\pm 5 \mathrm{~V}, 60 \pm \mathrm{I} \mathrm{Hz}$.
(a) If voltage and frequency are correct, proceed to step 2.
(b) If vol tage and frequency are incorrect, notify power supply supervi sor.

CAUTION

Do not energize section if vol tage or frequency is not correct. Danage to equi pnent may result.

Step 2. Press phase test switch on power panel for A, B, and C.
(a) If phases A, B, and C are correct, proceed to step 3.
(b) If incorrect phase Iamp lights, notify power supply supervi sor.

CAUII ON

Do not energize section if incorrect phase Iamplights. Danage to equi pment nay result.

Step 3. Check safety switch position.
(a) If safety switch is ON , proceed to step 4.
(b) If safety switch is OFF, turn ON

Table 1-2. TROUBLESHOOTI NG - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON

1. NO ELECTRI CAL PONER TO SECTI ON - Cont

Step 4. Check main circuit breaker position.
(a) If circuit breaker is ON , refer to di rect/general support mai nt enance.
(b) If circuit breaker is OFF, turn ON
(c) If circuit breaker trips repeatedly, notify power supply supervi sor.
2. NO ELECTR CAL PONER TO EQU PMENT.

Step 1. Check equi pnent power switch.
(a) If power switch is ON , proceed to step 2.
(b) If power switch is OFF, turn ON

Step 2. Check power cord.
(a) If power cord is pl ugged in, proceed to step 3.
(b) If power cord is unpl ugged, pl ug in.

Step 3. Inspect circuit breaker panel for breakers in OFF position.
(a) If all circuit breakers are ON, refer to direct/general support mai ntenance.
(b) If any circuit breakers are OFF, turn ON

Table 1-2. TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
3. BLACKOUT SWTCH DOES NOT OPERATE.

Step 1. Check blackout switch position.
(a) If switch is $O \mathbb{N}$, proceed to step 2.
(b) If switch is OFF, reset switch to BLACKOUT.

Step 2. Check to see that striker plate contacts roller on microswitch.
(a) Loosen screus, and nove plate up or down until microswitch operates.
(b) If blackout switch still fails to operate, refer to or gani zati onal mai ntenance.

1-10. MAINTENANCE PROCEDURES.
Thi s section contains instructions covering oper at or nai nt enance functions for the Drafting Support Section. Personnel required are listed only if the task requi res nore than one.
b. After compl eting each nai ntenance procedure, perform oper ational check to be sure that equi pment is properly functioning.

I NDEX

PROCEDURE PARACRAPH
Repl ace Fl uor escent Lamp. 1-10. 1
Servi ce Ventilation Ducts 1-10. 2
Repl ace Bl ackout/ Done Li ght 1-10. 3

1-10. 1 Replace_Fluorescent Lamp_

MDS: 81C, Cartographer
TOOLS: None
SUPPLI ES: FI uor escent Lanp

WARNING

Death or serious injury may result if power is left on while servicing
a. Turn switch OFF.

b. Gently pull diffuser fromlight bracket, and place diffuser out of the way to prevent danage.
c. Renove safety tab from lamp socket.
d. Rotate defective lamp until prongs are free fromsl ot and renove.
e. Insert new I amp prongs into sl ot and rotate 90 degrees.
f. Rei nstal l safety tab into lamp socket.
g. Rei nstall diffuser.
h. Turn power ON

1-10. 2 Service Ventilation Ducts.
MDS : 81C, Cartographer
TOOLS: Vacuum Cl eaner
Fl at Tip Screndri ver
SUPPLI ES: None
a. Cover equi pnent to prevent dust from enteri ng equi pnent.
b. Close all doors and cabi nets.
c. Renove any docunents or other uork that nay be danaged by dirt/dust.
d. Turn of f ai r conditioner/heater.

e. Renove four screns from each ventilation duct deflector.
f. Renove all duct deflectors.
g. Vacuum di rt or dust from deflector louvers.
h. Insert vacuum cleaner probe into ventilation duct at each deflector hole, and vacuum as far as probe will reach.
i. Rei nstall deflectors and secure with four screns.
j. Turn on ai r conditioner/heater.
k. Vacuum any di sl odged di rt or dust frominterior of section.
I. Renove covers for operation.

1-10.3 Repl ace Bl ackout/ Done Li qht.

MDS: 81C, Cartographer
TOOLS: None
SUPPLI ES: Lamp (12 V) Silicone Spray (Item 25, Appendix E)

NOTE

Bi ackout light and done Iight are seal ed units. No bulb repl acement is possi ble. Compl ete Iight must be repl aced.

a. Push Iight and gasket up into openi ng.
b. Tilt and renove light and gasket from opening.
c. Disconnect defective light from connect or.
d. Connect new light to connector.
e. Rei nstal l gasket in openi ng.

NOTE

The use of silicone spray on the gasket will help to position light.
f. Position light in gasket and push in.

Section IV ORGANIZATIONAL MAINTENANCE

1-11. LUBRICATION INSTRUCTIONS. This equi pment does not requi re lubrication at thi s level of nai ntenance.

1-12. REPAIR PARTS, SPECIAL TOOLS; TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE); AND SUPPORT EQUIPMENT.

1-12. 1 Common Tools and Equi pnent. For authori zed common tools and equi prent, refer to the Modified Table of Organization and Equi pnent (MOE) applicable to your uni t.

1-12.2 Speci al Tool s; Test. Measurenent, and Di agnostic Equi pnent; and Support Equi pment. Speci al Tool s, TMDE, and Support Equi prent is listed in the applicable repair parts and special tools list and in Appendix B of this nanual.

1-12.3 Repair Parts. Repair parts for this equipment are listed in the Repai r Parts and Speci al Tool s List, TM 5-6675-316-24P coveri ng organi zati onal nai ntenance for this equi pnent.

1-13. SERVICE UPON RECEIPT.

NOTE

The section nay be recei ved nounted on a chassis, or as a van body for nounting on an available transporter, or on site. Inspection of the chassis is covered in TM 5-2330-305-14. Inspection of the air condi tioner/ heater is covered in TM 5-4120-367-14.

1-13. 1 Ghecki ng Unpacked Equi pnent.

I nspect the equi pnent for danage incurred during shi pnent. If the equi pnent has a been danaged, report the danage on DD Form 6, Packi ng I mprovenent Report.
(1) Visual Iy inspect the section exteri or starting at the rear to cover rear, curbside, roadsi de, front, top, and bottom Inspect for danage, tears, breaks or corrosi on.
(2) Enter section and inspect for broken equi pment, tool boxes, chai rs, or equi prent loose and not secured.
(3) Cl ose doors and vents to determine if light leaks exist.
(4) Inspect doors for damage, torn or rotted seal s, and tightness of osure.
(5) I nspect interi or for evi dence of water danage, fungi, mildew or corrosi on.
(6) Report danage or di screpancies in accordance with AR 735-11 and AR 735-11-2.
b. Check the equi pnent agai nst the packing list to see if shipnent is comple. Report all di screpanci es in accordance with the instructions of DA Pam 738-750.
(1) I nvent ory section agai nst Components of End Item and Basic Issue Itens Li sts (Appendi x C).
(2) Invent ory expendable supplies contai ned in section as shown in Appendix E.
(3) Conduct operational checks on equi pment in accordance with the chapters in this manual when operators are available and power can be safely provided to the van body.
c. Check to see whether the equi pnent has been nodified.

1-14. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES.

PMCS are desi gned to keep the equi pnent in good working condition by performing certain tests, inspections, and services. The intervals provide you, the organi zati onal technician, with time schedul es that determine when to perform speci fied tasks.
b. I tem number col um. Item numbers are assi gned in chronol ogi cal ascendi ng sequence regardless of interval designation. These numbers are used for your "TM Number" col um on DA Form 2404, Equi prent Inspection and Mai ntenance Wbr ksheet, in recording the results of PMCS.

I nterval col ums. This col umn determines the time period desi gnated to perform your PMCS.
d. Item to be inspected and Procedures col um. This col um lists functiononal groups and their respective assenblies and subassenbly es as shown in the Mai ntenance Allocation Chart (Appendix B). The appropriate check or service procedure follous the specific item to be inspected.

Preventive nai ntenance checks and services for the air conditioners/heaters are contai ned in TM 5-4120-367-14.
f. List of tools and naterials required for PMCS is as follows:
Item
Vacuum Cl eaner
Quantity
8 in. Adj ustable Wench 1 ea
Cross Ti p Screndri ver 1 ea
Fl at Tip Screudri ver 1 ea
Spring Scale 1 ea
Padl ock 1 ea
Fl ashl i ght 1 ea

Table 1-3. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES

Do not open circuit breaker panel or service electrical connections, cables or switches until main power is off, and voltage meter confirms circuit is not energized. Death may result from failure to observe these safety precautions.

1. Turn off main circuit breaker. Turn off safety switch.
2. Padlock safety switch.
3. Tighten all loose screws, bolts, and clamps.
4. Check which switches, switch plate outlets, receptacles, and posts require repair.

Table 1-3. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

1. Remove screws from front of grille.
2. Remove front grille.
3. Using vacuum cleaner, clean screens on side doors. Vacuum inside of air vent.
4. Reinstall grille and secure with screws.

Table 1-3. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & \mathbf{B} \\ & \mathbf{D} \\ & \mathbf{A} \end{aligned}$	Before During After	W - Weekly AN - Annually (Number) - Hundreds of Hours M - Monthly S - Semiannually Q - Quarterly BI - Biennially
ITEM NO.	IN. TERVAL	ITEM TO BE INSPECTED PROCEDURE
4	M	Inspect Fire Extinguisher. 1. Remove from mounting bracket. Check free movement of bracket. 2. Inspect nozzle and adapter assembly for damage. 3. Inspect seal. Be sure it is not broken. 4. Weigh cylinder. Replace if gross weight has decreased by $6 \mathrm{oz}(170 \mathrm{~g})$ or more.

1-15. ORGAN ZATI ONAL TROBBLESHOOII NG PROCEDURES.

a. Organi zational troubl eshooting procedures cover the nost common mal functions that may be repai red at the organizational level. Repair or adjust nent requiring specialized equi prent is not authorized unl ess such equi pnent is available. Troubl eshooting procedures used by the operator should be conducted in addition to the organizational troubl eshooting procedures.
b. This nanual cannot list all the possible malfunctions or every possible test/ inspection and corrective action. If a malfunction is not listed or corrected by a listed corrective action, notify your supervisor.

For uni dentified malfunctions, use the facing schenatic or the fol dout located at the end of this manual for further fault anal ysis.
d. If any component of the Drafting Support Section does not power up when turned on, verify that 120 V ac is present at the receptacle. If voltage is not present, pl ug equi pnent into receptacle with power available and proceed with equi prent troubl eshooting. Perform no- power troubl eshooting procedures for dead recept acle (Table 1-4).

Table 1-4. ORGANIZATIONAL TROUBLESHOOTING

MALFUNCTI ON

TEST OR I NSPECTI ON

CORRECTI VE ACTI ON

WARNING

El ectrical shock hazard. Be sure power is off when checking continuity at troubl eshooting points. Death or serious injury could result fromfailure to do so.

1. FLUORESCENT CEI LI NG LAMP IS I NOPERATIVE.

Step 1. Check for continuity of fluorescent lamp switch.
(a) If continuity exists, proceed to step 2.
(b) If continuity does not exist, repl ace switch (paragraph (1-16.3).

Table 1.4. ORGANIZATIONAL TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON

CORRECTI VE ACTI ON

1. FLUORESCENT CEI LI NG LAMP IS I NOPERATI VE - Cent

Step 2. Check for continuity of lamp ballast.
(a) If continuity exists, proceed to step 3.
(b) If continuity does not exist, replace lamp ballas: (paragraph 1-16.1).

Step 3. Check for shorts in RF Filter. Repl ace RF filter (paragraph 1-16.2).
2. EXHAUST FAN IS I NOPERATI VE.

Check on/ of f switch for continuity.
(a) If conti nuity exi sts, repl ace fan (paragraph 1-16.9).
(b) If conti nuity does not exi st, repl ace switch (paragraph 1-16-4).
3. EMERGENCY LI GITS ARE I NOPERATI VE.

Press in test indi cator.
If Iamps do not light, repl ace energency light assembly (paragraph 1-16.11).
4. NO PONER TO EQU PMENT.

Step 1. Check circuit breaker ON OFF position.
(a) If circuit breaker is ON, proceed to step 2.
(b) If circuit breaker is OFF, turn ON
(c) If circuit breaker trips repeatedly, notify power supply supervi sor.

Table 1-4. ORGANIZATIONAL TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
4. NO PONER TO EQU PMENT - Cont

Step 2. Check circuit breaker input for 120 V ac.
(a) If input voltage is present, proceed to step 3.
(b) If input vol tage is not present, refer to direct/general support mai ntenance for repai r or repl acement of defective wi ring.

Step 3. Check circuit breaker output for 120 V ac.
(a) If output voltage is present, proceed to step 4.
(b) If output voltage is not present, refer to direct/general support nai ntenance for circuit breaker repl acement (paragraph 1-20.5).

Step 4. Renove receptacle and check for 120 V ac input.
(a) If present, repl ace receptacl e (paragraph 1-16.6).
(b) If not present, refer to di rect/general support nai ntenance for repai r or repl acenent of defective wiring.

1-16. MAINTENANCE PROCEDURES.

Thi s section contains instructions covering organi zational mai ntenance functions for the Drafting Support Section. Personnel required are listed only if the task requi res more than one.
b. After compl eting each mai ntenance procedure, perform operational check to be sure that equi pment is properly functioning.

I NDEX

PROCEDURE

PARAGRAPH
Repl ace Fl uorescent Lamp Bal last 1-16. 1
Repl ace Radi o Frequency (RF) Filter 1-16.2

I NDEX - Cont
PROCEDURE PARAGRAPH
Repl ace Fl uorescent Lamp Switch 1-16. 3
Repl ace On/ Off Switch 1-16. 4
Repl ace Bl ackout/ Done Li ght Mcroswitch 1-16. 5
Repl ace Receptacle 1-16. 6
Repl ace Víre Molding 1-16. 7
Repai r Tel ephone Bi ndi ng Post Assenbly 1-16. 8
Repl ace Exhaust Fan. 1-16. 9
Repl ace Exhaust Fan Cover. 1-16. 10
Repl ace Energency Li ght Assenbly 1-16. 11
Repair Blackout Curtain 1-16. 12
Repai \mathbf{r} Van Body Ski \mathbf{n} (Temporary) 1-16. 13
Repl ace Ti edown Socket 1-16.14
Repai \mathbf{r} Level Indi cat or 1-16. 15
Repl ace Ai r Vent Screen 1-16. 16
Replace Air Vent Cover 1-16. 17
Repai \mathbf{r} Personnel Ladder 1-16. 18
1-16. 1 Repl ace Fl uor escent Lamp Bal I ast.
MDS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repair Specialist
TOOLS: Fl at Tip Screudri ver
1/4in. Wench1/4 in. Drive Socket SetScri be
SUPPLI ES: Lamp Ballast Wre Ties
WARNINGDeath or seri ous injury may occur unl ess overhead light circuit breakerand nain circuit breaker are turned off bef ore working on light fixture.
a. Turn off overhead light circuit breaker and nain circuit breaker.
b. Renove diffuser fromlight fixture.
c. Renove safety tabs and Iamps. Pl ace in diffuser.
d. Squeeze light wiring guard and renove.
e. Renove wire ties as requi red.

f. Tag wi res from ballast for reference.
g. Di sconnect ballast wire from wire nut connection.
h. Pry out lamp socket hol der with flat tip screudriver.
i. Usi ng scribe, depress wire clips and di sconnect ballast wiring.
j. Renove nut and defective ballast.
k. Instal I new bal last and connect wires to corresponding I anp socket hol ders.
I. Secure with nut.
m Reconnect bal last wire to wire nut connection.
n. Renove tags.
0. Install new wire ties.

NOTE
Be sure wires are free of kinks and do not interfere with placenent of wire guard.
p. Rei nstall wire guard.
q. Rei nstall I amp and safety tabs.
r. Rei nstal liffuser.
s. Turn on overhead light circuit breaker and nain circuit breaker.

1-16. 2 Repl ace Radi o Frequency (RF) Filter,
MDS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci al ist
TOOLS: Fl at Tip Screudri ver
1/4 in. Wench
1/4 in. Drive Socket Set
SUPPLIES: RF Filter
Wre Ties
WARNING

Death or seri ous injury may occur unl ess overhead light switch is turned OFF before working on light fixture.
a. Turn overhead Iight switch OFF.
b. Renove diffuser fromlight fixture.
c. Renove saf ety tabs and I amps. Pl ace in diffuser.
d. Squeeze light wi ring guard and renove.
e. Renove wi re ties as requi red.

f. Tag wires to filter.
g. Renove wi re nuts and di sconnect filter wires.
h. Renove nuts and defective filter.
i. Install new filter. Secure with nuts.
j. Reconnect filter wires and secure with wire nuts.
k. Renove tags.
l. Install new wire ties.

NOTE

Be sure wires are free of ki nks and do not interfere with placenent of wire guard.
m Reinstall wire guard.
n. Rei nstal I lamps and safety tabs.
0. Rei nstal liffuser.
p. Turn on light switch.

1-16. 3 Repl ace Fl uor escent Lamp Switch.
MDS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci alist
TOOS: Flat Tip Screudri ver Needle Nose Pliers Fl ashl i ght

SUPPLI ES: Switch Assenbly

WARN NG
Death or serious injury may occur if lighting circuit breaker is not turned of f bef ore working on lamp assenbly.

NOTE
Alternate lighting is required to perform this task.
a. Turn circuit breaker OFF.
b. Renove bezel nut.
c. Note notch in label plate and renove label plate.
d. Loosen screus.

NOTE

Note position of cover and reinstall as noted.
e. Renove cover plate.
f. Tag and di sconnect wi res from defective switch.
g. Install new switch and connect wires.
h. Insert switch through cover plate and label plate.

NOTE
Be sure label plate is in same di rection as when renoved. Secure with bezel nut.
i. Aline cover plate with hol es and secure with screns.
j. Turn circuit breaker $O \mathbb{N}$

1-16.4 Replace On/Off Switch

MOS : 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci alist
TOOS : FI at Tip Screudri ver
SUPPLI ES: Switch

WARNING

Death or seri ous injury nay occur if switch circuit breaker is not turned off before working on switch.
a. Turn of f appropriate circuit breaker.

b. Renove screus.
c. Renove cover plate.
d. Renove nounting screvs.
e. Pull switch assenbly from wire gui de to gain access to wires.
f. Loosen terminal screus; then di sconnect wi res.
g. Install new switch.
h. Reconnect wires.
i. Guide switch into wire guide, al ining hol es.

NOTE
Be sure wi res are not ki nked or strai ned.
j. Rei nstall mounting screws.
k. Rei nstall cover plate and secure with screws.
I. Turn on switch circuit breaker.

1-16. 5 Repl ace Bl ackout/ Done Li ght Mcroswitch.
MDS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci al ist
TOOLS: Fl at Tip Screndri ver
6 in. Adj ustable Wench
SUPPLI ES: Mcroswitch

WARNING

Death or serious injury nay occur fromel ectrical shock unl ess power is of f bef ore servicing.
a. Turn of f blackout/done light circuit breaker.
b. Renove conduit cover.
c. Renove nut and pull out switch to expose wiring.
d. Di sconnect wi res from defective switch.
e. Connect wi res to new switch.
f. Install switch and secure with nut.
g. Adjust striker plate until plate contacts rollers.
h. Reinstall conduit cover.
i. Turn on circuit breaker.

1-16.6 Repl ace Recept acl e.

MDS: 83FJ6, Reproduction Equi pnent Repai rer
41B, Topographic Instrument Repai r Specialist
TOLS: FI at Tip Screudri ver
SUPPLI ES: Receptacle
WARNING

Death or serious injury may occur if receptacle circuit breaker is not turned off before working on receptacle.
a. Turn of f receptacle circuit breaker.

120 V
208V

b. Renove cover pl ate screus.
c. Renove cover plate.
d. Renove nounting screus.
e. W'thdraw receptacle to gain access to wires.
f. Loosen terminal screws and ground screw Then di sconnect wi res.
g. Reconnect wires. Connect green (ground) wire first.
h. Instal I new receptacle.
i. Guide receptacle into wire gui de.

NOTE
Be sure wi res are not ki nked or strai ned.
j. Secure receptacle with screws.
k. Rei nstall cover plate. Secure with screns.
l. Turn on receptacle circuit breaker.

1-16.7 Repl ace Víre Mol di ng.
MDS: 83FJ 6, Reproduction Equi pnent Repai rer
41B, Topographic Instrument Reps Speci al ist
TOOLS: Fl at Ti p Screudri ver
Hacksaw
Fl ashl i ght
DELETED
Paint Brush
Mul ti meter
Drill and Bits
File
Machinist Rule
SUPPLI ES: Pai nt (Item 18, Appendi x E)
Cheesecl oth (Item 6, Appendi x E)
Conduit Base
Conduit Cover Padl ock

WARNING
Death or seri ous injury nay occur from failure to turn off and padlock safety switch before repai ring nol ding.

NOTE
Alernate lighting is required to perform this task.
a. Turn off and padl ock saf ety switch.
b. Renove conduit cover.
c. Inspect wi res for danage.

NOTE

Refer to di rect support mai ntenance for wing repair if necessary.
d. Loosen wing and carefully pull it from the entire base section.
e. Renove screvs and base from uall.
f. Mark and neasure danaged area on nol di ng. Record measurenent.
g. Cut danaged area from nol ding.
h. Cut section from new nol di ng to the length recorded in step f.
i. Using danaged area as a template, nark nounting hol es on new piece.
j. With a number 25 drill bit, drill holes in new nol ding.
k. With file, renove all burred edges.
I. Paint base section as requi red.
m Rei nstall conduit base on wall with screws.
n. Carefully place wing back in conduit base.
0. Rei nstal l cover on base.
p. Test wi ring for continuity between power wi res and conduit. If there is continuity, determine and correct grounding fault.
q. Test wiring with power on.

1-16. 8 Repai r Tel ephone Bi ndi ng Post Assembly.

MDS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci al ist
TOOLS: Cross Tip Screudri ver 1/2 in. Conbi nation Wench

SUPPLI ES: Bi ndi ng Post Box Bi nding Posts

a. Renove cover nounting screus. Renove cover.
b. Renove plate nounting screvs to gai n access to back of plate.
c. Tag wires for identification
d. Renove nuts and wires from binding ri di ng posts.
e. If requi red, renove box nounting screvs and repl ace box.
f. Repl ace any def ecti ve bi ndi ng posts. Secure wi res to new posts and renove tags.
g. Rei nstall box assembly and plate, and secure plate with screws.
h. Secure cover with screws.

1-16.9 Repl ace Exhaust Fan.
MDS: 83FJ 6, Reproduction Equi pment Repai rer
or
41B, Topographi c Instrument Repai r Speci al ist
TOLS: Fl at Tip Screndri ver
Cross Tip Screudri ver
Wre Cutters
SUPPLI ES: Fan Assenbly
Wire Nuts
Power Cord'

WARNING

Death or seri ous injury may occur if power is left on. Turn fan switch OFF and unpl ug power cord before working on exhaust fan.
a. Unpl ug power cord.

b. Renove screws and place fan assenbly on work surface.
c. Loosen screus on cable clamp.
d. Renove screus and cover.
e. Tag wi res and cut wi re nuts from wi res.
f. Renove power cord from defective fan assenbly.
g. I nstall new fan.
h. Install new power cord.
i. Connect wi res with wire nuts and renove tags.
j. Tighten cable clamp screus.
k. Rei nstall cover. Secure with screws.

1. Rei nstall fan assembly. Secure with screws.
m Plug in power cord.
1-16. 10 Repl ace Exhaust Fan Cover.
MDS: 83FJ 6, Reproduction Equi pment Repai rer
or
41B, Topogr aphic Instrument Repair Speci alist

TOOLS: Drill and Bits Pop Ri vet Gun Scraper

SUPPLIES: Pop Rivets Exhaust Fan Cover Gasket Sol vent P-D. 680 (Item 24, Appendi x E) Adhesi ve (Item 1, Appendi x E) Cheesecl oth (I tem 6, Appendi x E) I mper neable \mathbf{G} oves Goggl es

a. Drill pop rivets from hi nged cover to renove vent cover.
b. Renove defective cover and transfer nounting hardware to new cover.

WARNING

Dry cl eani ng sol vent, P- D. 680, used to cl ean parts is potentialy dangerous to personnel and property. Avoid repeated and prol onged skin contact. Wear sol vent-i mper neable gl oves and eye/face protective equi pnent when usi ng sol vent. Do not use near open flame or excessi ve heat. Flash point of solvent is $100^{\circ} \mathrm{F}$ to $138^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right.$ to $\left.59^{\circ} \mathrm{C}\right)$.
c. Scrape gasket off van body and cl ean area with sol vent P- D-680.
d. Secure new gasket to van body with adhesi ve.
e. Aline fan cover and pop rivet to hi nge.
f. Test cover for tightness of closure.

1-16. 11 Repl ace Emergency Li ght Assenbly.

MDS: 83FJ 6, Reproducti on Equi pment Repai rer
41B, Topographic Instrument Repair Specialist
TOOLS: Cross Tip Screudri ver
Fl at Tip Screudri ver
SUPPLI ES: Energency Li ght Assembly

> WARNING

Death or serious injury may occur if power cord is not unpl ugged bef ore servi ci ng light.

a. Unpl ug power cord.
b. Renove cover screws. Mbve cover out of way.
c. Renove nounting screus.
d. Renove energency light assenbly.
e. Install new energency light assembly. Secure with screus.
f. Secure cover with screws.
g. Plug in power cord.

1-16. 12 Repai r Bl ackout Curtai n .
MDS: 83FJ 6, Reproducti on Equi pment Repai rer
41B, Topographic Instrument Repai r Speci al ist
TOOLS: Cross Tip Screndriver
SUPPLIES: Hooks
Val ance
Curtain
Nyl on Hook and Pile Tape
Adhesi ve (Item 1, Appendi x E)

a. Renove curtai \mathbf{n} from hooks.
b. Pull curtain and val ance from nyl on hook and pile tape.
c. Renove end screw, lockwasher, and fastening bracket from ceiling.
d. Repl ace danaged hooks.
e. Rei nstall fastening bracket with hooks. Fasten with end screw and l ockwasher.
f. G ue loose nyl on hook and pile tape to wall or bracket. Repl ace tape if worn out.
g. Hook curtain to bracket.
h. Attach val ance.
i. Check curtai \mathbf{n} for free novenent.

1-16. 13 Repai r Van Body Ski n (Temporarv).
MDS: 52C, Utilities Equi pment Repairer
TOOLS: Pliers
Ball Peen Hammer
Sci ssors or Utility Knife

SUPPLIES: Cl oth Duct Sealing Tape (Item 27, Appendix E) Sili cone Seal ant (I tem 22, Appendi x-E) Spray foam (Item 26, Appendi x E) Cheesecl oth, (Item 6, Appendi x E)

a. Bend broken edges of punctured skin inward into puncture hol e. Do not attempt to renove fragments of skin by bending or pulling outward. Bend ski n i nuard onl y enough to put broken edges bel ow surface of unbroken ski n.
b. Renove any loose fragnents of foam which are not now hel din place by bent broken ski n. Renoving small pi eces of foam or dust is nore i mportant than renovi ng chunks.
c. Using cloth slightly dampened with water, wipe area around puncture to renove any di it or mad and wi pe dry.
d. Inject sprayfoam into puncture. Mbund sprayfoam to about $1 / 8$ in. (3.2 mm) above surface of unbroken ski n . Apply bead of seal ant about 1/4 in. (6.4 mm) wide over all cuts in skin leading out from puncture. Do not snooth out seal ant.
e. Pl an how puncture is to be covered with tape before applying any tape. Length and width of tape, number of tape strips, overl apping, and how tape is applied will affect sealing capability of repair. Each piece of tape should extend about 1-1/2 in. (3.81 cm) beyond seal ant it will cover. If this will require more than one strip of tape, tape should overlap about $1 / 2 \mathrm{in}$. (12.7 mm). If three or nore strips of tape are required, center strip should be applied first.
f. Hol ding tape taut, apply it per pendi cul ar to panel skin. Do not apply with rolling notion either end-to-end or center-to-ends. Do not rub each strip in place indi vidually. Apply all strips lightly with proper overlap and rub into place.
g. If necessary, damaged tape can be repl aced; however, it should be renoved with caref ul peeling notion to avoid danage to seal ant. If seal ant al so peel s back, new seal ant should be applied. Compl ete renoval of old seal ant is not necessary. Pernanent repair by di rect support, or hi gher category of mai ntenance, shoul d be made as soon as possi ble.

1-16. 14 Repl ace Ti edown Socket.
MDS: 83FJ 6, Reproduction Equi pment Repai rer 41B, Topographic Instrument Repai r Specialist

TOOLS: Cross Tip Screudri ver
Flat Tip Screudri ver
SUPPLIES: Ti edown. Socket

a. Renove screus from ti edown socket.
b. Pry defective socket fromfloor.
c. Instal I new ti edown socket. Rotate new tiedown socket enough to avoid instaling screws in old screw hol es.
d. Rei nstall screus.

1-16. 15 Repair Level_Indicator_
MOS: 83FJ 6, Reproduction Equi pment Repai rer
41B, Topographic Instrument Repai r Speci alist
TOLS: Carpenter's Level Cross Ti p Screudri ver Knife, TL- 29

SUPPLI ES: Level I ndi cat or Gasket

a. Level section using level indicators. Then confirmsection is level by using carpenter's level on floor insi de section.
b. Adj ust section level ing jacks until section is level as indicated by carpenter's al inement level at front-rear and left-right at each end as shown in illustration.

c. Loosen knurled screvs and nove cover away from level assenbly.
d. Renove screws and washers to rel ease frame and gasket.
e. Renove transparent cover.
f. Renove screus and washers to renove level indi cator.

Repl ace level assenbly and secure with screvs and washers.
h. Reinstall transparent cover.
i. Install new gasket.

Rei nstall frame and secure with screus and washers.

1-16. 16 Repl ace Air Vent Screen.
MDS: 83FJ 6, Reproduction Equi pment Repai rer 41B, Topographic Instrunent Repai r Specialist

TOOLS: Cross Tip Screudri ver Sci ssors

SUPPLI ES: Rubber Adhesi ve (Item 1, Appendi x E) Nyl on Screen (I tem 21, Appendi x E)

a. Rai se access cover and remove screvs hol di ng screen frame to section.
b. Renove screen and frame.
c. Clean all old screen naterial and adhesive fromframe.
d. Cut new screen material to size and attach to frame with adhesi ve.
e. Rei nstall frame to section and secure with screws. Lower cover.

1-16. 17 Repl ace Air Vent Cover.

MOS: 83FJ 6, Reproduction Equi pnent Repai rer
41B, Topographic Instrument Repai r Specialist
TOOLS: Drill and Bits
Pop Ri vet Gun
SUPPLI ES: Vent Cover
Pop Ri vets

a. Loosen thumb screus.
b. Drill pop rivets from hinge. Renove air vent cover.
c. Aline hol es and pop rivet new air vent cover to section.
d. Ti ghten thumbscreus.

1-16. 18 Repai r Personnel Ladder.
MOS: 83FJ 6, Reproduction Equi pment Repai rer
TOOLS: Drill and Bits
Pop Ri vet Gun
9/ 16 in. Conbi nation Wench
8 in. Adjustable Wench
SUPPLI ES: Cabl e Assenbly
Quick Rel ease Pins
Pop Rivets
Mbunting Brackets

a. Renove I adder from nounting bracket.
b. Renove bol ts, washers, and nuts securing danaged nounting brackets to I adder.
c. Renove danaged cable assenbly from ladder by drilling out rivet.
d. Reinstall or install new nounting brackets. Secure with bolts, washers, and nuts.
e. Ri vet new cable assembly to I adder.

NOTE

Be sure I adder nounting brackets fit section on rear door and under personnel doors.
f. Rei nstal I I adder on nounting bracket.

1-17. PREPARATION FOR STORAGE OR SHIPMENT.

a. Section may be stored or shi pped either nounted on trailer chassis or unnounted. Preparation of trailer chassis is covered in TM 5-2330-305-14 and should be referred to when trailer-mounted section is prepared for storage and shi pment. TM 5-4120-367-14 must be revi ewed for instructions covering air conditioner/heater.
b. Renove consumale supplies that have limited shelf life or broken seals. Replace missing itens and be sure that all renaining consumable supplies are at authorized level s. Be sure all maj or components are operational.
c. Renove all unauthorized or personal equipnent from section.
d. Move all classified naterial or sensitive data to proper storage. Complet e all accountability and/or transfer of docunents.
e. Refer to Preparation for Mbenent (paragraph 1-6.2) and follow applicable steps and any additional steps directed by proper authority.

Section V DIRECT/GENERAL SUPPORT MAINTENANCE

1-18. REPAIR PARTS, SPECIAL TOOLS; TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE); AND SUPPORT EQUIPMENT.

1-18. 1 Common Tool s and Equi pnent. For authori zed common tools and equi pment, refer to the Modified Table of Organization and Equi pnent (MOE) applicable to your uni t.

1-18. 2 Speci al Tool s: Test. Measurenent, and Di agnostic Equi pnent; and Support Equipnent. Speci al Tool s, TMDE, and Support Equi pnent is listed in the applicable repair parts and special tools list and in Appendix B of this manual.

1-18. 3 Repair Parts. Repai r parts are listed and illustrated in the Repair Parts and Speci al Tool s Li st, TM 5-6675-316-24P covering di rect/general support mai ntenance for this equi pnent.

1-18.4 Electrical System Di rect/general support level of maintenance for the repair of the section's el ectrical system will consist of el ectrical wiring repair using standard el ectrical wi ring repair procedures.

1-19. DIRECT/GENERAL SUPPORT TROUBLESHOOTING PROCEDURES.
a. Direct/general support troubl eshooting procedures cover the nost common mal functions that may be repai red at the di rect/general support level. Repair or adj ust ment requi ring speci alized equi pnent is not aut horized unl ess such equi pment is available. Troubl eshooting procedures used by lower level mai ntenance should be conducted in addition to the di rect/gener al support troubl eshooting procedures.
b. This manual cannot list all the possible malfunctions or every possible test/inspection and corrective action. If a malfunction is not listed or corrected by a listed corrective action, notify your supervisor.

For uni dentified nal functions, use the facing schematic or the fol dout located at the end of this manual for further fault anal ysis.

Table 1-5. DIRECT/GENERAL SUPPORT TROUBLESHOOTING

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON

1. PERSONEL/ CARGO DOORS DO NOT CLOSE COMPLETELY.

Step 1. Check that latch rollers rotate freel y. Repl ace I at ches (paragraph 1-20.2).

Step 2. Check to see if Iatch rods are bent.
Repl ace I atch rod\$ (paragraph 1-20.2).
Step 3. Check to see if door gasket is torn or broken.
Repl ace door gasket (paragraph 1-20.3).
2. PERSONEL/ CARGO DOORS DO NOT LATCH PROPERLY.

Check door latch for missing or danaged components.
Repl ace door I atch (paragraph 1-20.2).
3. AI R OR WATER ENTERS SECTI ON AROUD DOOR.

Check to see if door gasket is worn or broken.
Repl ace door gasket (paragraph 1-20.3).

Table 1-5. DIRECT/GENERAL SUPPORT TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
4. RECEPTACLES DO NOT OPERATE BUT CI RCU T BREAKERS ARE ON
$\overline{\text { WARNING }}$
Turn off main circuit breaker bef ore inspecting or servicing circuit breakers or receptacles. Failure to do so may result in death or serious injury.

Step 1. Check to see if power cable is firmy connected to power entry panel.

Connect power cable.
Step 2. Check to see if vol tage meter and frequency scale and I NCORRECT PHASE or CORRECT PHASE I amp indicate necessary power.

Notify your supervi sor for service of power supply at source.
5. CI RCU T BREAKERS TRI P CONTI NULLY.

$$
\overline{\text { WARNING }}
$$

Turn off and padl ock safety switch bef ore inspecting or servicing circuit breakers or receptacles. Failure to do so may result in death or serious injury.

Step 1. Check to see if receptacles are overloaded.
Reconnect equi pnent to different receptacl es.
Step 2. Check to see if receptacles are danaged.
Repl ace receptacl es (paragraph 1-16.6).

1-20. MAINTENANCE PROCEDURES.
a. Thi s section contains instructions covering di rect/general support nai ntenance functions for the Drafting Support Section. Personnel required are listed only if the task requires nore than one.
b. After compl eting each nai ntenance procedure, perform operational check to be sure that equi prent is properly functioning.

I NDEX

PROCEDURE
PARACRAPH
Repai \mathbf{r} Personnel Door Handl \mathbf{e}. 1-20. 1
Repl ace Cargo Door Latch Assenbly 1-20.2
Repl ace Personnel / Cargo Door Gasket 1-20.3
Repl ace Personnel / Cargo Door 1-20.4
Repl ace Circuit Breaker 1-20. 5
Repai r Fl oor Covering 1-20.6
Repai r Van Body Ski n (Permanent) 1-20.7
Repl ace Ai r Condi ti oner/ Heater 1-20. 8
Repl ace Air Conditioner Support Bracket 1-20.9
Repl ace Ventilation Duct 1-20. 10

1-20.1 Repai r Personnel Door Handle.
MDS: 63W Wheel Vehi cle Repai rer
TOOLS: Cross Tip Screudri ver Needle Nose Pliers 15/ 16 in. Combi nation Wench Hammer
Center Punch
1/8in. Hex Head Key Wench
SUPPLI ES: O-Ring Whsher
Sl eeve
Roll Pin
Personnel Door Handle Cheesecl oth (Item 6, Appendi x E)
Oil, Lubri cating, General Purpose (Item 15, Appendix E) Hand Oiler
Cotter Pin

a. Loosen screw and socket head setscrews. Renove defective insi de door handl e .
b. Renove cotter pin and pi ns from center latch arm assenbly.
c. Move latch rods out of way.
d. Punch roll pin from center I atch arm assenbly and pull latch arm assenbly from shaft.
e. VIthdraw Iatch and defective outsi de door handle.
f. Inspect all components for wear.
g. Repl ace worn 0 - ring washer and sl eeve.
h. Repl ace ot her uorn components as needed.
i. Rei nstall shaft and new outside door handle.
j. Aline center latch arm assenbly on shaft. Secure with new roll pin.
k. Aline I atch rods. Attach to latch arns with pins, washers, and new cotter pin.
I. Rei nstall new inside door handle.
m Lightly oil all noving parts. Wipe up surplus oil.

1-20.2 Repl ace Cargo Door Latch Assenbl y.
MDS: 63W Wheel Vehicle Repai rer
TOOLS: 9/ 16 in. Conbi nation Wench
SUPPLI ES: Cargo Door Latch Assenbly

a. Unl ock I atch.
b. Renove capscrevs and washers from brackets. Renove brackets and shins.
c. Renove defective Iatch assenbly and Iatch rod.
d. I nstal I new I atch assenbly and Iatch rod.
e. Rei nstall shins, brackets, washers, and capscreus.
f. Check novenent of I atch rod and I atch assembly. Lock I atch.

1-20.3 Repl ace Personnel / Cargo Door Gasket.
MDS: 63W Wheel Vehi cle Repai rer
TOOLS: Knife
SUPPLI ES: Vi nyl Gasket
Adhesi ve (Item 1, Appendi x E)
Sol vent P- D- 680 (Item 24, Appendi x E)
I mper neabl e G oves
Goggl es

a. Open door compl etely and secure in open position.

WARNING
Dry cleani ng sol vent, P- D-680, used to clean parts is potentially dangerous to personnel and property. Avoi d repeated and prol onged ski n contact. Wear sol vent-i mper neable gloves and eye/face protective equi pnent when usi ng sol vent. Do not use near open flame or excessi ve heat. Fl ash point of sol vent is $100^{\circ} \mathrm{F}$ to $138^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right.$ to $59^{\circ} \mathrm{C}$).
b. Renove defective gasket by prying gasket from door. Scrape traces of gasket and adhesi ve from door. Whish with sol vent P- D-680.
c. Coat gasket area on door with adhesi ve.
d. Firmy press new gasket onto door.
e. Wipe excess adhesi ve from gasket.
f. Cl ose door and wi pe excess adhesi ve from door and frane.
g. Al low adhesi ve to dry bef ore using door.

1-20.4 Repl ace Personnel / Cargo Doors.

MDS: 63W Wheel Vehicle Repai rer
PERSONEL: Two persons are required to performthis procedure.
TOLS: Pop Ri vet Gun
Electric Drill and Bits
Hoi st
3/4 in. Conbi nation Wench
Pai nt Brush
SUPPLI ES: Personnel / Cargo Door
Pop Ri vets
Vi nyl Gasket
Pai nt (Itens 17, 17A and 17B Appendi x E)
Pai nt (Item 18, Appendi x E)
Adhesi ve (Item 1, Appendi x E)
Cheesecl oth (Item 6, Appendi x E)

WARNING

To prevent personal injury or equi pnent danage, do not attenpt to renove doors unl ess suitable lifting equipnent and hoist are available.

a. Renove handrails and ladders if rear cargo door is to be replaced.
b. Unl ock and open door to be repl aced.

c. Place sling around door and put a slight strain on hoist to renove wei ght from hi nges.
d. Renove bol ts from hi nges on rear personnel door. On si de personnel door, drill out pop ri vets from hi nge. Renove hi nges from door.
e. Renove danaged door using hoi st.
f. Install new door usi ng hoi st.
g. Reinstall hi nges on rear personnel door. Secure with bolts. Rei nstall hi nges on side personnel door. Secure with pop rivets.
h. Renove sling from door.
i. Install new gaskets on door after it is nounted (paragraph 1-20.3).
j. Repai nt as needed.
k. Q ose and lock door.

1-20.5 Repl ace Gircuit Breaker.
MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOLS: Fl at Tip Screudri ver Mul ti neter

SUPPLI ES: Circuit Breaker

WARNING

Turn of f and padl ock safety switch. Turn off all indi vidual circuit breakers bef ore inspecting or servicing circuit breakers. Failure to do so may result in death or serious injury.
a. Turn off, and padlock safety switch. Turn off indi vidual circuit br eakers.
b. Renove circuit breaker box cover.
c. Use multimeter to make sure voltage is not present.
d. Renove defective circuit breaker by pushing and snapping out of place.
e. Tag and renove wires from defective circuit breaker.
f. Pull circuit breaker from panel.
g. Reconnect wires to new circuit breaker. Secure wires with screws.
h. Instal I new ci rcuit breaker by pushing and snapping into place.
i. Rein natal circuit breaker box cover.
j. Remove padlock and turn on safety switch and india vi dual circuit breakers.

1-20.6 Repair Fl our Covering.
MOS: 52C, Utilities Equip pent Repairer
TOOLS: Utility Knife
Cross Ti p Screndri ier
Scraper
St tai ght edge
SUPPLI ES: Vinyl FI our Covering Epoxy Resin (Item 20, Appendix E) Fl our Patch (Item 10, Appendix E) Cheesecl ot (Item 6, Appendix E) Adhesi va (Item 2, Appendix E)

a. Cut a rectangular area from damaged floor covering.
b. Remove ti down socket. Remove damaged floor covering.
c. Cut new floor covering to fit. Apply adhesive to floor. Press down new floor covering.
d. Rein instal li adown socket.

1-20.7 Repai r Van Body Ski $n($ Per manent).
MDS: 63W Wheel Vehi cle Repai rer
TOOS: Pod Ri vet Gun
Electric Drill and Bits
Paint Brush
SUPPLI ES: Pod Ri vet s
Sprayf oam (Item 26, Appendi x E)
Silicone Seal ant (Item 22, Appendix E)
Sheet Metal
Pai nt (Itens 17, 17A and 17B Appendi x E) Cheesecl oth (Item 6, Appendi x E)
a. Bend broken edges of skin inward into puncture hol e. Do not attempt to renove fragnents of skin by bending or pulling out.
b. Renove any loose fragnents of foam
c. Use cl oth dampened with water to clean area around puncture. Wipe dry.
d. Inject sprayfoaminto puncture. Fill to $1 / 8 \mathrm{in}$. (3.2.mm) above surface of unbroken skin. Apply seal ant to cracks leading to puncture.

e. Prepare sheet netal patch Iarge enough to cover danaged area with overl ap.
f. Pl ace patch over danaged area and mark all around edges of patch.
g. Drill holes 1 in. (25.4 mm) apart.
h. Appl y seal ant to edges of patch.
i. Apply patch to van body.
j. Instal I pop rivets beginning at center of each side. Ri vets should be placed 1 in. (25.4 mm) apart.
k. Pai nt as needed.

1-20.8 Repl ace Air Condi ti oner/Heater.

MDS: 63W Wheel Vehicle Repai rer
PERSONEL: Two persons are requi red to performthis procedure.
TOOLS: Cross Tip Screndriver
Lifting Equi pment
8 in. Adj ustable Wench
7/ 16 in. Combi nation Wench
SUPPLI ES: Ai r Condi ti oner/ Heater
Sol vent P-D. 680 (Item 24, Appendi x E)
Gasket
Silicone Seal ant (Item 22, Appendi x E)
Adhesi ve (Item 1, Appendi x E)

AIR CONDITIONER/HEATER MOUNTING

$\overline{\text { WARNING }}$

- Use hoi st or proper Iifting equi pnent to repl ace air conditioner/heater. Failure to do so may result in death or serious injury.
- Turn off air conditioner/heater circuit breaker and unpl ug power cord. Failure to do so nay result in death or serious injury.
a. Turn off air conditioner/heater circuit breaker. Unpl ug or di sconnect power cord as appropriate.
b. Renove screus hol ding air duct to ai r conditioner/heater.
c. Renove nut, washer, and screw from each corner of ai r conditioner/heater nounting. Renove screws securing nounting to van wall.
d. Disconnect drain line from air conditioner/heater.
e. Attach sling to lifting handles. Raise hoi st enough to renove slack from sling.
f. Renove nounting bolts and washers.
g. Slide out air conditioner until other lifting handles are free. Attach sling to handles.
h. Rai se defective air conditioner/heater with hoi st until unit is free from brackets and section.
i. Place air conditioner/heater on flat-bed truck or pallet.

> WARNING

Dry cleaning sol vent, P-D.680, used to clean parts is potentially dangerous to personnel and property. Avoid repeated and prol onged skin contact. Uear sol vent-i mper neable gloves and eye/face protecti ve equi pment when using sol vent. Do not use near open flane or excessi ve heat. Fl ash point of sol vent is $100^{\circ} \mathrm{F}$ to $138^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right.$ to $\left.59^{\circ} \mathrm{C}\right)$.
d. Cl ean seal ant from opening usi ng dry cl eani ng sol vent P- D. 680.
k. Renove danaged gasket and replace with new gasket.
I. Rai se ai r conditioner/heater until it rests on air conditioner/heater brackets.
m Renove tuo sling hooks as unit is eased into hole until grille touches duct.
n. Renove remai ning sling.
0. Reinstall washers and nounting bol ts.
p. Reconnect drain lines.
q. Rei nstal I screvs securing air conditioner/heater nounting to section wall. Rei nstall screw, washer, and nut to each corner of nounting.
r. Rei nstall screws securing air duct to air conditioner/heater.
s. Reconnect or plug in power cord. Turn on air conditioner/heater circuit breaker.

1-20.9 Repl ace Air Conditioner Support Bracket.
MDS: 63W Wheel Vehi cle Repai rer
PERSONEL: Tho persons are required to perform this procedure.
TOOLS: 9/ 16 in. Conbi nation Wench
Lifting Equi pnent
Kni fe, TL- 29
SUPPLIES: Air Conditioner Support Bracket Drain Tube Ties

WARNING

Seri ous inj ury to personnel or danage to equi pnent nay occur unl ess tuo or nore personnel are used to renove and repl ace air conditioner/heater because of wei ght and bal ance of air conditioner/heater.
a. Renove air conditioner/heater (paragraph 1-20.8).
b. Cut drain tube ties, and renove drain tube from support bracket.
c. Renove bolts, lockwashers, and washers securing support bracket.
d. Renove defective support bracket.
e. Instal I new support bracket. Secure to van with bol ts, lockwashers, and washers.
f. Rei nstall drain tube on support bracket, and secure with new ties.
g. Rei nstall air conditioner/heater (paragraph 1-20.8).

1-20. 10 Repl ace Ventilation Duct.
MDS: 52C, Utilities Equi pnent Repairer
TOOLS: Hacksaw
Electric Drill and Bits
Ball Peen Hammer
Pop Ri vet Gun
Paint Brush
Cross Tip Screndri ver
SUPPLI ES: Seal ant (Item 22, Appendi x E)
Wbod Bl ock
Pop Ri vets
Pai nt (Item 18, Appendi x E)
Cheesecl oth (Item 6, Appendi x E)
Sal vaged Ventilation Duct
a. Turn of f ai r conditioner/heater so air will not blow through duct.

b. Drill ri vets from danaged section of duct. Renove joiner plates.
c. Renove nounting screvs to renove danaged sections of duct.
d. Strai ghten renai ni ng sections of duct at edges using hammer and nood bl ock.
e. Place seal ant on nounting edges.
f. Instal l new duct section cut fromsal vaged duct. Secure with screws.
g. Rei nstall joi ner plates. Install rivets to secure.
h. Paint as necessary.
i. Turn on ai r condi tioner/heater.

CHAPTER 2

COMPOSING MACHINE

Section I INTRODUCTION

2-1. GENERAL INFORMATION.

2-1.1 Scope.

a. Model Number and Equi pnent Nane. Mbdel AM 3510 Direct Entry Phototypesetting Composing Machi ne.
b. Purpose of Equi pment. To produce professi onal quality, camera-ready composi tion.

2-1.2 Reference I nf ormation.
a. List of Abbreviations

ACL	Accumal ated Leadi ng
BDE	BUS DRI VER ENABLE
CE	CH P ENABLE
CEQ	CHARACTER EQUALITY
CLK	Clock
COMP	Comparator
CPU	Central Processi ng Uni t
CRRDY	Carri age Ready
D/ A	Di gital to Anal og
DTATRK	Data Track
DSCCL	Disc Cl ear
FCH	FETCH CONTROL
FEQ	FONT EQULI TY
FF	Flip FI op
FLXD	Fl ex Data

FP	Fl ash Pul se
1/ 0	I nput/ Out put
LVC	Low Vol tage Control
MASCLK	Master Cl ock
MP	M ssi ng Pul se
PC	Pri nted Ci rcuit
PROM	Programmable Read Onl y Menory
RAM	Random Access Menory
ROM	Read Onl y Menory
R/ W	Read/ Wite
SEDG+MP	SI NGLE-EDG PLUS M SSI NG PULSE
R	Regi ster
SPDREF	Speed Reference
STBEDG	Strobe Edge
STBTRK	STROBE TRACK
STD	Strobe Data Track
TDLY	Ti ne Del ay
WDTHALW	WDTH ALLOVED
WRT	Wite

b. G ossary.
Center Command
Copy is centered bet ween l eft
and ri ght nargi ns.

EM Space Fi xed space 18 uni ts wi de.
EN Space Fi xed space 9 units wide.

Set Solid When leadi ng space, measured in points, is same as type size.
Super Shi ft Method of accessi ng addi ti onal 26 characters available on type di sc.

White Space Space built into type desi gn so that characters do not touch.

2-2. EQU PMENT DESCRI PTI ON

2-2.1 Equipment Characteristics, Capabilities, and Features,

a. Col or-coded, Iight-touch keyboard.
b. Unrestricted type style mixing.
c. Mbnitor screen, 11 in. X 8 in. (27.94 cm X 20.32 cm), with green characters on bl ack background.
d. Keyboard-sel ected type size, 5-1/2 to 74 points.
e. Four type styles or special synbols on each type disc.
f. Type di sc changeable in 10 sec.
g. Line length of 45 picas.
h. Aut onatic letter spacing.
i. Aut onatic hyphenl ess justification.
j. Autonatic flush left, right, and center.

2-2.3 Location and Description of Major Components.

MON TOR. Contains 11 in. X 8 in. (27.94 cm x 20.32 cm) CRT and associ ated power supplies.

KEYBOARD. Al phanumeric and control, 83-key keyboard provi des manual input to system

FI LM TAKE-UP MAGAZI NE. Hol ds exposed film Magazine is removable.
MN NFRAME. Houses optical unit, computer stack, filmmagazine, and power supplies.

COMP/ SET SYSTEM LOGC. Fourteen- position PC card file houses applications program and ten interface boards.

PAPER FEED COMPARTMENT. Contains photosensitive paper supply, drive rollers, and shutter nechani sm

MA N DC PONER SUPPLY. Provides six dc output voltages with variety of current capabilities.

DRI VER ASSEMBLY. Recei ves I ogic level s from notherboard assenbly and dri ves optical system el ectronechani cs.

LOG C COOLI NG FAN Provides forced-air cooling for logic system
PONER TRANSFORMER. Mai n transf or ner converts suppl yvoltage to those requi red by uni t.

PAPER DRI VE. Stepper notor advances photosensitive paper. OPTI CAL BED. Main casting provides bed for optical assembly.

CHARACTER STORAGE UNT. Houses xenon flash unit, font disc drive and optical detector assembly.

2-2.3 Equi prent Data.

Power Requi renents

Vi deo Display

Keyboard

Type Size

Li ne Length
$115 \mathrm{~V}, 60 \mathrm{~Hz}, 7.5 \mathrm{amps}$ used with constant voltage transforner.
11. 0×8.0 in. ($27.9 \times 20.3 \mathrm{~cm}$); di spl ays 14 - poi nt green characters on black background.

83 keys, typewriter-ori ented, col or-coded

5-1/2 to 74 poi nt range; sel ected by keyboard function.

Maxi mum of 45 picas in all type sizes.

Type Styles	Four type styles on each font di sc; 448 characters per di sc; al sel ectable by keyboard.
Leadi ng	Pri nary, secondary, and add-I ead; From 0-99 1/2 points; sel ectable by keyboard.
Justification	Aut onatic hyphenl ess justification or manual end of Iine; automatic flush left, right, and center
Wbrd Space Control	M ni mum and maxi mum al lowable justifying word space val ue; sel ectable from keyboard.
Letter Spaci ng	Aut onatic insertion of letter spacing as requi red; naxi mum val ue programed from keyboard.
Di mensi ons	
Hei ght	39-1/2 in. (100.3 cm)
Vidth	43 in. (109.2 cm)
Depth	51 i n. (129.5 cm)
Wei ght	485 l bs (220 kg)

2- 3. TECHN CAL PRI NCI PLES OF OPERATI ON

2-3.1 General. The composing machine is a keyboard operated phototypesetter. It consists of a keyboard with CRT di splay and console containing the photo unit. From one type disc, 74 point sizes are available in four type faces. These are all accessi ble from the keyboard. Fornat inf or nation such as type font, size, line I ength, I ine remai nder and leadi ng are all cl early indi cated on the CRT.

The sel ected characters are instantly visible on the CRT di spl ay upon keystroking. These can easily be changed or corrected as desired, bef ore printing. When a line is completed, it is automatically set by the photo unit while the next line is being keyboar ded.

The microprocessor, housed in the nai nf rane, perforns the following functions:
a. Handling al I input control and al phanumeric keystrokes whenever they occur.
b. Loading the character generator nenory, to be capable of di spl ayi ng the keystrokes on the CRT.
c. Readi ing a stored character width code from the character disc.
d. Cal cul ating functions rel ated to point size and line length.
e. Commanding the various stepping motors to the proper positions.
f. Flashing a particular character.
(1) When the keyboard is operated, the output data is autonatically stored in a buffer menory by the keyboard interface logic. The microprocessor processes the functional data, and the font character infornation is read from the disc, which is then stored in the di spl ay menory. The di spl ay menory supplies this data to the character generator logic which processes it for presentation on the CRT.
(2) When an end- of-the-line deci si on is detected, the programtransfers data fromthe lower half of the screen to the top. At the same time, it begins to process data sequentially fromthe di spl ay menory, passing instructions to the various phototypesetter functions which will set the characters on the film As the filmis advanced, it is stored in a take-up cassette nounted on top of the console. When the required copy has been set, the filmis advanced into the take-up cassette and then cut off. The take-up cassette can then be renoved and taken to the processing machi ne.

2-3. 2 Det ai l ed.

a. Photo unit.

(1) The photo unit is basi cally a canera which exposes in mages from not or driven di sc through a lens system and onto photographic material. The di sc contains four rows of characters, width infornati on and timing infornation. The light source flashes when triggered by the timing information and illuminates only the required character. The if mage of this character then passes through an enl arging lens, a collimating lens, collecting I ens, 45-degree angl ed mirror and onto the-photographic material. By noving the collecting lens assenbly backward and forward, lines of type can be forned. The photographic naterial is noved at the end of each line in preparation for the next.

(2) The type disc is a circular piece of film 5.375 in. (13.650 cm) in di aneter and approxi natel y 0.007 in . (0.177 mm) thick. The naterial is a stable pol yester plastic, coated with a high resol ution emul sion.
(3) The character array contai ns four tracks of characters, each in a different font style; there are 112 positions in each track. Tracks are numbered 1 to 4, from the center to the edge of the disc. Total character capacity of the di sc is 448. The same al phanumeric character appears in tracks 1, 2, 3 and 4 for each segnent. The outer edge of the di sc has three data tracks, a strobe track, and two width tracks.

(4) Each data track character segment consi sts of 18 bits represented by ei ther transparent or non-transparent adj oining lines. The first six bits rel ate to the strobe track, and each succeeding set of three bits rel ate to a character in one of the four fonts. Si nce there are two tracks of width information, each character has six data bits. The width codes per character represent five data bits (0 to 31) and a parity bit. The data bits will be translated in the photo unit to character unit widths as shown on the following page.

$$
\begin{aligned}
\mathrm{dB} & =\text { Data Bit } \\
\mathrm{W} & =\text { Character Unit Width }
\end{aligned}
$$

$\mathrm{dB}-\mathrm{W}$	$\mathrm{dB}-\mathrm{W}$	$\mathrm{dB}-\mathrm{W}$	$\mathrm{dB}-\mathrm{W}$
$0-0$	$8-5.5$	$16-9.5$	$24-14$
$1-1$	$9-6$	$17-10$	$25-15$
$2-2$	$10-6.5$	$18-10.5$	$26-16$
$3-3$	$11-7$	$19-11$	$27-17$
$4-3.5$	$12-7.5$	$20-11.5$	$28-18$
$5-4$	$13-8$	$21-12$	$29-19$
$6-4.5$	$14-8.5$	$22-12.5$	$30-20$
$7-5$	$15-9$	$23-13$	$31-21$

(5) The data and timing tracks are di vided into 112 segments, as are the al phanumerics. Each data segnent is di vided into 18 parts which are bits of inf ormation. These bits are approxi mately 0.0008 in . (0.020 mm) in width, and are ei ther transparent (clear) or non-transparent (black).

(6) Located at the outside perimeter of the disc is a detector assembly which picks up data fromthe tracks on the edge of the di sc. The detector assembly consists of a large light emitting di ode, approximately $1 / 4 \mathrm{in}$. (6.35 mm) in di ameter, whi ch projects infrared Iight across the three tracks, through the di sc and onto a 45-degree mirror where the light is turned through 90 degrees. A small Iens focuses the beam of II ght through a slit nounted on the font pickup lens tube. Three photodetectors are nounted inline with the slit, and each corresponds to a data track on the disc. $\quad \mathbf{W}$ th the disc in rotation, pul se patterns representative of the three data tracks are devel oped and detected by the photodetectors. The three pul se trains are then converted by the font interface logicinto bi nary data whi ch is representative of the data encoded on the three tracks of the di sc.
(7) To expose an indi vi dual character, the program determines at which point in the font di sc rotation the xenon flash will fire. The xenon flash freezes the sel ected character and projects it through the lens system and onto the film
(8) A font change is accomplished by noving the whole disc Iaterally so that the adj acent character is positioned opposite the flash window The track data detection system noves with the disc assenbly.

(9) The xenon flash tube is fed by a high voltage potential fromthe flash power supply. The resulting 0.080 in . (2.032 mm) long arc passes into the collector assenbly where it is diffused by the screen. The lens focuses the bright spot through the window onto the font disc. The character inage is then projected.

SCHMITT TRIGGER OUTPUT

(10) To supply the high vol tage requi red to fire the xenon flash tube, an oscillator (A) produces a triangul ar wave shape which the Schmitt Trigger (B) di vides into al ternating pul ses di splaced in time from one another.
(11) These pul ses are applied alternatel y through the power drivers to the 30: 1 transformer at 50 V (C), producing a high voltage alternating wave. This high vol tage is fed to the rectifiers and filter capacitors of the voltage doubl er circuit (D). The voltage doubler circuit provi des charging voltage (75 V) for the trigger pack capacitor and control feedback to the regul at or (E). The regul at or det ermines the triggering point (in B) and, therefore, the width of the pul ses going to the power dri vers.
(12) When the high voltage capacitors are fully charged (approxi natel y 1500 V), the regul at or noves the triggering point beyond the peak of the oscillator out put, stopping the pulse output and the production of high voltage. Production is resumed when the voltage across the capacitors falls bel ow the level set by the regul at or.

(13) The trigger circuit (F) contains a capacitor, an SCR, and a trigger transformer. When the trigger pul se cones in, and fires the SCR, the capacitor di scharges through the primary of a winding inside the trigger pack (G) firing the xenon tube. Each sel ected type size requires a different flash intensity to ensure correct exposure density. Larger type requi res higher intensity and vice-versa. The microprocessor program deterni nes the flash val ue for each type size, and a digital-to- anal og converter converts this information into a current.
(14) The flash intensity current is fed to the regul at or circuit where it controls the output level of the dc high voltage supply to the xenon flash tube.
(15) As previ ousl y expl ai ned, each font disc contains four rows of type, each in different styles. To access all four rows of type it is necessary to nove the whole font disc laterally so that an adjacent character inage track will be positioned in the exposure window of the light source.

(16) The font disc is noved Iaterally by a stepping notor which is controlled by the microprocessor. In this case, the flash cone window is opposite row 1 of the type. To access rous 2,3 and 4 , the font disc nould be noved to the right.

(17) The nechani cal novenent of the font di sc is accompl ished by changing the position of the cam This laterally noves the roller and the font disc. The flash wi ndow remai ns stationary. Once the sel ected character has been illuminated, the i mage passes through the optical system where it is magnified as determined by keyboard size sel ection, and the val ues stored in the microprocessor program

POINT SIZE

(18) The illumi nated character inage is projected into the enl arging lens. The position of this lens fromthe font disc determines the final inage size, in this case from 5.5 to 74 points. The enl arging lens is noved backward and for ward on a carriage dri ven by a helix screw and stepping notor. The microprocessor program determines the position of the lens by feeding infornation on the required number of notor steps via the dri ver board to the stepping notor. By noving the I ens cl oser to the font disc, the aerial inage increases in size. By noving the I ens away from the font disc, the inage gets smaller. This increase and decrease in size can be translated into point size as shown. The image formed is known as the primary image, and is from 5.5 to 74 points in size.

(19) Mbunted in the same plane is anot her novable lens, the collinator lens. This lens is al ways kept one focal length away from the aerial inage produced by the enl arging lens. This means that the image leaving the collinator lens will be projected as parallel light. The collimator lens is noved backward and forward on a carriage dri ven by a helix screw and stepping notor. As in the case of the enlarging lens, the microprocessor program determines the position of the lens by feedi $n g$ information on the requi red number of steps via the driver board to the stepping notor. The conbi ned novements of the enl arging and collinator lenses, as determined by the val ues stored in the program produce point sizes from 5.5 to 74.

(20) The parallel light fromthe coillimator lens passes al ong the optical pl ane into the collector lens. This lens has a focal length distance of 350 mm which is the optical distance bet ween this lens and the filmplane. The inage is turned through 90 degrees by the 45-degree angle mirror and onto the filmplane. The collector lens is mounted on a carriage parallel to the filmplane. This carriage noves al ong wayrods dri ven by a steppi ng notor/cable arrangenent.

Number of Motor Steps $=$ (Absol ute Character Width) X (Point Size)

3

(21) The hori zontal di stance that the scanning carriage will nove is determined by the main program using the formul a above. In this manner, correct spacing for specific character widh is maintai ned. (Character width is obtai ned from the di sc track for each character.)
b. Filmfeed and nagazi ne system

(1) Vertical spacing between Iines of exposed copy is accomplished by advancing the exposed film upuard as each Iine of type is exposed. The unexposed filmis stored in a lightproof contai ner in the filmfeed nagazine. Filmis pulled fromthe storage contai ner by the pressure rollers. The stepping notor is gearcoupled to the pressure rollers, which drives the filmpast the cutter and into the take- up cassette.

(2) The film drive or leading not or has a long out put shaft. The shaft is extended through the support bearing to a knob which is used for manual film advance. The spur gear rotates with the nain shaft, turning the gear. This gear is fixed to the counter shaft. The rotation is transferred via the flexible spring to a mechanical digital display which shows the quantity of film that has been used. The roller drive is taken through the 90 -degree gear train to two coupling gears and to the roller drive shafts. The stepping notor operates in 0.007 in . (0.177 mm) steps, as controlled via the main program
(3) Four constant current Darlington dri ver circuits supply the four leading notor coils to step the notor. The drivers are controlled by signal from the LVC (Low Voltage Control) stepper board, a fifth signal is used to switch the current to the coils from full to half when the notor is not stepping.

(4) A si ngle Darlington driver circuit associ ated with each of the four coils al l ous current to flowin one direction through the notor coil, the current either flows to ground via di ode CR15 or to +26 V via Q39, depending on whether Lead 1 is hi gh or low
(a) When Lead 1 is bi ased high and a stepping si gnal is recei ved at Darlingt on Q13, then Q39 is on. This allows full current to flowfromthe - 26 V suppl y through emitter resistor R9 to Q13 which is al so on, through the notor coil and Q39 to the +26 V suppl y .
(b) Wen Lead 1 is bi ased Iow, Darlington Q39 is off and the notor coil return is through di ode CR15 to ground. This allows only half of the current to flow through the notor coil.
(c) The current in each notor coil remai ns the sane regardless of temperature or not or impedance, the base of each Darlingt on bei ng cl amped to a reference voltage.
(d) Constant current regul ation is achi eved in this manner: Emitter resistor R 9 provi des negative current feedback which changes the bi as of Darlington Q13 according to the current drawn by the notor coil. Current in the coil can be neasured by sensing the voltage drop across enitter resistor R9.

(5) When the current in the coil is turned off, the collapsing field will induce transients. These are shunted back into the - 26 V suppl y by di ode CR4, zener di ode CR14 and Darlington Q12. Each notor coil is dri ven with the sane basic circuit so the program provides four signals in sequence to dri ve the stepping notor, and the filmis advanced the requisite number of steps upuard at the completion of each line of type.
c. Variator or enl arging lens drive system The variator or enl arging I ens noves backward and forward on a carriage dri ven by a hel ix screw and stepping notor. The nai n program determines the position of the lens by feeding infornation on the requi site number of notor steps.

(1) The variator or enl arging lens is nounted on the carriage stepping assenbly by a three-point nounting. This lens is al so fitted with a variable aperture, controlled by a lever. The carriage stepping assenbly is located on two rods which are fixed parallel to the optical plane. Mbvenent, both forward and backward, is accomplished by rotation of the helix screw

(2) On one side, the parallel rod passes through preci si on bearings fixed to the carriage stepping assenbly. On the other side, two ball bearings rest on the upper and lower surfaces of the second parallel rod, preventing any rotational novenent of the carriage stepping assenbly as it is driven by the helix screw

(3) The hel ix screw is rotated by the variator stepping notor, the notor being mounted horizontally in a casting approxi natel y midway al ong the optical plane. The not or shaft is coupled to the helix screw by a taper pin.

(4) Four constant current Darlington driver circuits supply the four variator notor coils used to step the notor. Sequential signals are supplied by the LVC stepper board.
(a) When the stepper signal input is high, the Darlington pair Q29 is on. This allows current to flow fromground supply through emitter resi stor R17, Darlington pair Q29, and the notor coil to the +26 V supply. With the stepper si gnal input low the Darlington pair Q29 is bi ased of f and no current flows.
(b) With the Darlington pair Q29 on, current flows through emitter resistor R17. As the current flowincreases, the voltage drop across emitter resistor R17 increases, reducing the forward bi as on the Darlington pair Q99 and the current passing through the notor coil. This effectively contracts the coil current. Current flowing in the notor coil can be neasured by sensing the voltage drop across the emitter resistor R17.

(5) When the current through the notor coi 1 is turned off, the collapsing nagnetic field around the coil induces vol tage transients which could danage the Darlingt on Q29. Di odes in the bridge CR12 bypass the vol tage spike directly to the 26 V supply, and indi rectly to the $\mathbf{+ 2 6} \mathbf{V}$ supply via Q12 and zener di ode CR14.
d. Collimator lens drive system The collinator lens noves backuard and foruard on a carriage driven by a hel ix screw and stepping notor. The nai n program determines the position the lens by feeding inf or mation on the number of steps required. This lens of 105 mm focal length intercepts the aerial inage of the character as projected by the variator or enlarging lens. It is al ways positioned to mai ntain a di stance of one focal length (105 mm) away from the aerial inage. If the collimator lens sees the primary image at this distance as its object source, then the inage leaving the lens will be as parallel rays of light.

(1) The Iens is nounted in a three-point suspensi on system on the collimat or carriage. The carriage runs on tho rods which are parallel to the optical plane. A hel ix screw dri ves the carri age backward and forward to mai ntain the 105 mm rel ati onshi p with the variator lens.
(a) On one side, the parallel rod passes through precision bearings on the carriage. On the other side, two carriage-nounted ball bearings located on top and bottom of the parallel rod prevent any rotational novenent of the carriage stepping assembly as it is driven by the helix screw
(b) The collinator lens helix screwis rotated by the collinator stepping notor. The notor is nounted horizontally al ongsi de the variator stepping notor, both notors bei ng nounted in a casting approxi matel y hal fway al ong the optical pl ane. The stepping notor shaft is coupl ed to the hel ix screw by a taper pin.
(c) Four constant current Darlington dri ver circuits supply the four collinator notor coils to drive the stepping notor. The drivers are controlled by sequential signals from the LVC stepper board.

(2) When the stepper si gnal input is high, the Darlington pair Q2 is bi ased on. This allows current to flow from ground through emitter resistor R15 and through the notor coil to the +26 V suppl y .
(a) VIth the stepper signal input low the Darlington pair Q5 is bi ased of f and no current flows.
(b) With the Darlington pair Q25 on, current flows through R15 and, as current flow increases, the vol tage drop across R15 increases, reduci ng the forward bi as on the Darlington pair Q25 and the current flowing through the notor coil. This effectively controls the coil current.

(3) When the current in the notor coil is turned off, the collapsing magnetic field around the coil induces voltage transi ents which could danage the Darlington Q25. Di odes in the bridge CR10 bypass the spike directly to the - 26 V supply and i ndi rectly to the +26 V supply via Q12 and zener di ode CR14.
e. Row shift.

(1) The font row shift stepping notor is bol ted onto the character storage unit frame. It is coupl ed to the canshaft by a si mple clamp. To change the row of type required, the whole font disc assenbly is noved laterally across the optical pl ane, pl acing the sel ected type row in front of the flash wi ndous.

(2) The actuating camis rotated by the stepping notor and bears upon the roller. This moves the font disc carriage al ong the slide agai nst the spring. A novable collar provides adjustnent of the spring tension.
(3) Four constant current Darlington dri ver circuits supply the four row shift notor coils to drive the stepping notor. The dri vers are controlled by sequential signal s from the digital anal og (D/A) stepper board.

(4) When the current in the notor coil is turned off, the collapsing magnetic field around the coil induces voltage transi ents which could danage the Darlingt on Q1. Di odes in the bridge CR10 bypass the spike directly to the $\mathbf{- 2 6} \mathrm{V}$ supply and indi rectly to the +26 V supply vi a Q12 and zener di ode CR14.
f. Carriage stepping assenbly. The collector lens and mirror assenblies are nounted on a carriage which noves parallel to the paper plane. The carriage noves al ong wayrods dri ven by a stepping notor/cable arrangenent.
(1) When the stepper si gnal \#l is hi gh, the Darlington pair Q7 is bi ased on. Thi s allows current to flow from ground through enitter resi stor R6 and the notor coil to the +26 V supply. When stepper signal \#2 is high, the Darlington pair Q6 is bi ased on. This al lows current to flow fromthe - 26 V supply through emitter resistor R5 through the notor coil to ground.
(2) When the stepper signal input is low the Darlington pair Q6, Q is bi ased off and no current flows.
(3) With the Darlington pair Q6 or Q7 on, current flows through R5 or R6 and, as current flow increases, the vol tage drop across R5 or R6 increases, reduci ng the forward bi as on the Darlington pai \mathbf{q} Q13 and the current flowing through the not or coil. This effectively controls the coil current.

(4) The mai n program and carriage escapenent board J 12 determines the position of the carriage assembly by feeding, inf or nati ion on the requi red number of not or steps to the driver board, where pairs of Darlington driver circuits, associ ated with each of the five notor coils, enable current to flowin either direction in each coil.

(5) The collector lens is nounted in a three-point suspensi on system which is part of the main carriage chassis. The inage fromthe collector lens is turned through 90 degrees by a miror where it falls onto the film plane.

(6) The compl ete carriage stepping assenbly travels parallel to the filmplane al ong two wayrods. A tandem arrangenent of two li near bal bushi ngs and a set of ball bearings gui de the carriage on the wayrods. The carriage is noved by a stepping notor, cable, and pulley arrangement.

(7) The 45-degree scan mirror is attached to the carriage casting with an el astic type adhesi ve which allows canting of the mirror to obtain perpendicularity. The canting is obtai ned with three jack screvs through the carriage butting into the back of the mirror. Once adjustment has been made, epoxy is applied to the mirror nounting. Field adjustnent is not normally required.

(8) The carriage stepping notor carries a double-grooved notor dri ve pulley. Around this is wrapped the tensi oned carriage drive cable. When the notor is stepped, horizontal novenent is accomplished as the cable winds and unvi nds fromthe drive pulley. Idier pulleys transmit this to the carriage stepping assembly, which is stepped al ong the wayrods. Correct tensi on of the drive cable is given by compressing the rubber pad.

(9) Carriage escapement board J 12 supplies 10 si gnal s to control the carriage stepping notor. These 10 si gnal s control 10 constant current Darlington dri ver circuits which supply current to the five notor coils to step the notor.
(a) Pairs of Darlington driver circuits associ ated with each of the five notor coils enable current to flow in either direction through the notor coil.
(b) When a si gnal is applied to U11, and it is high, it turns on the Darlington pair Q7. This allows current flow from ground through notor coil, Darlington pair Q7 and enitter resi stor R6 to the +26 V supply. When the input signal is low the Darlington pair Q is bi ased off and no current flow takes place.
(c) When si gnal input is applied to UB, Darlingt on pair Q6 is turned on. Thi s allows current flow from the - 26 V suppl y, through R5 and the Darlington pair Q6 to the notor coil. When the input signal goes low, the Darlington pair Q6 is bi ased of f and no current flow takes place.
(d) The current in the notor coils is regul ated to 1.35 amps , regardless of the temperature or notor impedance. When current flows through R5 or R6, a vol tage is devel oped across the resistance. If current tries to rise above the preset level of 1.35 amps , the voltage drop across the resi stors will increase. This will reduce the forward bi as on the Darlingtons. This in turn reduces the current passing through the notor coil. Current in the circuit can, theref ore, be neasured by the voltage drop across R5, R6. It should equal 1.35 V , as R5 and $6=1$ ohm
(e) When the Darlington is bi ased off, the resulting collapse of the magnetic field around the notor coil can give rise to voltage transi ents which could danage the Darlingtons. Bridge rectifier CR1 bypasses the voltage spike back to the +26 V and -26 V supplies. The other driver circuit pairs are identical to the one descri bed.
g. Disc drive.

(1) The font di sc drive notor is mounted on the character storage di sc chassis, a noi se filter PC board al so being part of the same assenbly. The font di sc drive is transmitted via a coupling to the disc shaft. The font disc is fitted onto the disc shaft and secured by a threaded knob assenbly which is an integral part of the font disc.

(2) The font disc shaft projects through to the front of the character storage unit, its location bei ng such that the disc is in perfect alinenent with the flash window and data track reader assembly. A +26 V supply for the disc drive not or cones from the driver board.

(3) As the font disc rotates, the amplified signal picked up fromthe strobe track is passed to the font interface logic board. Here the signal is compared with a reference frequency generated by a master clock circuit. The difference of these two frequencies is passed to the dri ver board, which nodifies the supply to the font drive notor until the tho frequencies are identical.
h. Shutter sol enoi d. The film nagazi ne assembly houses a shutter unit which shuts off the magazine, and unexposed filmfrom exposure to light when the covers or doors of the main optical section are opened.

(1) The shutter sol enoid is connected to the actuating arm by a downl ink attached to the sol enoid armature. The bl ade noves downuard to uncover the shutter area, and is hel d down by a 300 mA hol ding current. When the cover interlock switch is deactivated, the blade is closed, sealing off the film from exposure to light. The shutter sol enoid recei ves its operating voltage of 26 V from the driver board. controlled by the font interface III board.

(2) When the composing nachi ne covers are cl osed, the optical assembly is Iight proof, interlock switch is actuated and initiates a high, which turns on Darlington Q34. Shutter sol enoid switch S2 is in the normally cl osed position, and allons the full 26 V to pass through the sol enoid operating coil. This acti vates the shutter. With the shutter fully open, $\mathbf{S 2}$ opens and the operating current passes through the 7.5 ohns hol ding resi stance dropping fromthe full 2 amps operating to 300 nA hol di ng current. When the shutter sol enoid is deenergized, any induced vol tage transi ents are shunt ed away from the Darlington Q34 by di odes CR2, CR3 and part of bridge CR16. Del ay capacitor C7 is across Darlington Q34 to sl ow the swi tchi ng and suppress transi ent noi se.
i. Input/monitor unit.

The input/ nonit or unit is made up of an 83-el enent keyboard and 12.00 in. (30.48 cm) CRT monitor. This unit is nounted on a small extensi on table of f the main equipnent, connection being made via a multi way cable.

(1) The keyboard is an MDS encoding keyboard with 83 encoded keys. Each key station uses a Hall effect solid-state switch. Upon depression of a key the keyboard generates the appropriate 8-bit code and a keyboard strobe pul se which appears on the output lines of the keyboard. The 8-bit code is then stored in a buffer menory that is part of a 1K displ ay menory located on the character generator board. The output code generated by the keyboard remains on the output lines of the keyboard until another key is depressed.

(2) The Hall effect device is a transducer which changes its characteristics under the influence of a changing magnetic field. In the keyboard, the device is operated by magnetic material mounted in the key. Depression of the key activates the devi ce whi ch then switches the trigger circuit which hol ds the pul se generat or on. The resultant 8 -bit code, which is uni que to the key depressed, will remain online until another key is depressed which resets the trigger circuit.

(3) To produce a vi sual representation of the characters and functional data i nput to the phot ot ypesetter, character shapes and associ ated synbol sare di spl ayed on a 12 in . (30.5 cm) monitor screen.

(a) The nonitor unit is all solid-state (with the exception of the picture tube), and the power supplies are regul ated to ensure a stable di splay. The pi cture tube consi sts of a basic CRT nounted in the nonitor cabinet, and positioned to provi de easy vi ewing for the keyboard operator.
(b) The di spl ay of video inf ornation is achi eved by nodul ation of the beam bri ght ness in synchroni zation with the sweep of each horizontal scan line. Thi s inf ornation nould be passed into the video amp as VIDO IN. The vertical and horizontal drivers generate the raster scan.
(c) The regul ated Iow voltage power supply converts the $120 \mathrm{~V}, 50 / 60 \mathrm{Ht}$ input into-the various low vol tage dc regul ated supplies as required for those circuits other than the high vol tage suppl y.
(d) Al these circuits are housed in the input/monitor unit.

CHARACTER MATRIX BLOCK

(e) The character shapes are forned on the screen by video dot patterns which make up the character shapes. The video patterns are stored in a ROM accessed by the character generator logic. Each different pattern is stored in an address block which is X bits wide, and Y bits high, forming a natrix.
(f) Data bits are stored in the matrix block in locations representing the physi cal shapes of the characters or synbol s.

(g) When a character key is depressed, a nodul ating pulse stream is generated which is fed into the video amp in sequence with the sueep of the horizontal scan line. Each spike on the nodul ating pulse stream produces a bright spot on the CRT. As each succeedi ng line is scanned, the video pulse stream changes, finally producing the compl ete character. The sequence takes place over the full width of the number of characters sel ected in each line of print, up to the naxi mum of 64 characters per line.

(h) The address locations in the di spl ay menory describe the X - and Y coordi nates rel ating to the nonitor screen. The characters appearing on the first line of the screen would be stored in the first 64 locations of the display menory as an 8-bit code.
(i) The crystal oscillat or provides the nain tining control of the di splay system each cycle of the oscillator representing one dot on the screen. The X-dot counter di vides the output of the oscillator by the number of pulses desi gnated for the widh of the character matrix block pl us one dot on either side of the natrix for spaci ng.

horizontal drive \qquad
(j) The X-field counter counts the number of character natrix blocks on a Iine. As each character is compl eted, the X-dot counter increnents the X-field counter by one. When the character count matches the selected count, the X-field counter generates a horizontal drive si gnal.

HORIZONTAL
SCAN LINE 1
\longrightarrow 이이이잉ㅇ

(k) The Y - dot counter counts the horizontal scan Iines in a character row

(1) The Y -field counter counts the character rows on the screen. As the number of scan Iines is compl eted, the Y - dot counter increnents the Y -field counter by one. When the row count is satisfied, the Y -field counter generates a vertical dri ve si gnal.
(4) The di spl ay menory recei ves inf or nati on from the computer, and stores the characters to be di splayed on the screen. It also gets addressing infornation from the X and Y field counters. This information determines the position on the screen that the next character will be di splayed. The next required character is fed to the character data buffer. This buffer stores the next character information while other data is fed into the di spl ay nenory, and the character generator natrix ROM processes the last character.

(5) The character generat or natrix ROM stores all the character shapes in a matrix-format. The character data buffer tells the character generator which matrix block to sel ect for the next required character. The generator ROM al so has an i nput from the Y - dot counter which sel ects a horizontal slice of the selected block. The output of the generator ROMis, therefore, a dot pattern representing one slice of the character.

Mcroprocessor mai nframe. There are positions for a total of 14 cards. Positions J1 thru J8 are reserved for the program boards, and are bused together allowing board placements in any of the first eight positions.
(1) Positions J 9 thru J 14 have desi gnated positions for the interface boards.
(2) Position J 9 hol ds the character generator board. This board generates the vi deo si gnal s for di spl ay on the nonitor. These synbol s, when di splayed, will be representative of the characters and synbol s recei ved as input fromthe keyboard.
(3) In addition to the video si gnal s, the board generates horizontal and vertical sync signals for the monitor drive circuits.

(4) I ncorporated on the character generator board is a 1K x 8-bit RAM memory known as the di spl ay menory. This menory has 640 l ocations which store the character data di spl ayed on the screen. The remaining storage space is used by the nai n program as work space with 16 of these locations allocated as keyboard buffer.
(5) The character symbol s are stored in speci al ROM called the character generator. It contains 128 symbol s arranged in character blocks, any one of which can be sel ected by the code infornation stored in the di spl ay nemory. The character generator presents data for one horizontal slice of the sel ected synbol. By successi ve selection of these slices, the entire character or synbol is built up.
(6) As a function of the character generator logic, each complete character block is located to a specific X - and Y-coordinate on the screen which desi gnates an address location in the di spl ay menory.
(7) The di spl ay menory can, theref ore, reach into the character gener at or ROM sel ect-a-specific character or symbol and position it in a preciselocation on the nonitor screen.

The di spl ay menory has three main functions:
(a) Stores, in code form synbol s/ characters to be di splayed by the
noni tor.
(b) Used as a program uork area.
(c) Used as a keyboard buffer.
(8) Characters and symbols are stored in this IKx8-bit menory as if it were an extra part of the main program The menory is interfaced with the nain program via the data and address registers. These are located on the keyboard interface III board.
(9) Address inf or nation enters the keyboard interface 111 board vi a the address multiplexer where it is passed to the di spl ay nenory. At the same time, data is recei ved via the read/ write control. The read/urite control only allous data to be written into the menory while the horizontal display is blank. This prevents streaking or smearing of the noni tor image. The di spl ay menory al so accepts inputs from the X - and Y -field counters. This infornation determines the position on the screen and the instant in time that the next character is to be di spl ayed.
(10) The next character, once selected and its di splay position is determined, is fed into and stored by the character buffer. The character keystrokes are held in the seven- word buffer to be processed as required. As this seven- uord buffer is bei ng used, a second buffer is collecting input infornation. The cursor control al so recei ves its signal from the buffer register and, when a command is recei ved, the cursor control will invert the output of the video register.
(11) The character generat or ROM requi res three vol tages, $+5 \mathrm{~V},-3 \mathrm{~V}$ and +12 V , in addition to the ground. Two of these, -3 V and +12 V , are not available from the nai n power supply so they are produced on the character generator board.

(12) A commercial dc/dc converter produces the primary supply of - 3 V and +12 V at $100 \mu \mathrm{~A}$ and $10 \mu \mathrm{~A}$ respectivel y .

(13) A secondary or backup supply is co-l ocated with the primary source. It uses the sane input and output components as the primary.
k. 8K X 8-bit RAM board.

(1) The RAM menory is used for program and data storage. The board size of 8 K can be reduced in IK increments down to a IK board size. The board uses low powered static IKXI-bit RAMs with faster nenory speeds. Also, the read/ write function can be di sabled, allowing two nenories to share the same address. Al RAMs are organized by bits in col ums and by IK increnents in rows. The first IK of memory is in row A; the second $I K$, in row B. Bit 1 is in col um 4; bit 2, in col umm 5. The IK of menory and bit desi gnations are etched on the board.

(2) The address regi ster hol ds the address in menory to be accessed. The address regi ster is enabl ed by inputs Strobe Data Track (SDT) 1 and 2. The address outputs Al thru AlO drive the 8K RAM Address Iines Al thru A16 are used for chip sel ect decoder and board enable decoder. Two bus transcei vers interface the 8K RAM to the CPU data bus. The high-speed transcei vers are continuously enabled, and the bus drivers are gated on by the BDE signal only when data is called for fromthis board.

(3) Address Ii nes AI I, A12 and A13 are routed to the chip sel ect decoder via switch E/F2. There they are decoded into chip sel ect li nes (CEO thru CE7) to enable a single row of RAM ($1 \mathrm{~K} \times 8$-bit). Menory size is determined by the settings of switches E/FI-7 and E)F2. Address Iines AI, A12 and A13 are decoded by chip sel ect decoder to enable IK of RAM menory. For menory sizes smaller than 8 K , various conbi nati ons of AI, A12, A13 and CE5, CE6, H7 are compared at the comparator. The output of the comparator is used to enable or di sable the address comparator. When address lines All, A12 and Al3 are not used for enabling RAM, they are used as part of the BOARD ENABLE. These signal s are connected to menory size and address comparators through E/F2-I (AII), E/F2-5 (A12), and E/FI-7 (A13) where they are compared to E/FI-I (AII), E/FI-2 (A12) and E/FI-3 (A13). The remai ni ng address decode switches E/FI-4, E/FI-5 and E/FI-6 are compared di rectly to A14, A15 and A16.

(4) One final input to the comparat ors is DI SABLE for board di sable function. The board can be enabled only for the proper addresses, provi ded DISABLE is high. When WRT is low, R/Wgoes low if the board is enabled to write into menory. Chip Enable (CEO through CE7) on the RAM prevents the common R/Wsignal from writing into nore than the IK sel ected. The bus transcei vers (A2 and A3) output RAM data to the CPU bus when BDE is present. When FCH is I ow and BOARD ENABLE is high, BDE is hi gh.

1. Keyboard interface III board J 10 . Hol ds the keyboard interface III board which interfaces between the keyboard, data bus and character generator board. Total control of the character display is achi eved via this board. The keyboard interface III board contains al I the circuits necessary to feed keystrokes in code format into the character generator's di splay menory. It consi sts of the following circuits:

Cursor Speed Counter
Data Multiplexer
Rol I Control Circuit
Keyboard Counter/Load Regi ster

(1) Cursor speed counter. The operator controls cursor novenents fromthe keyboard. Two keys are provided for thi s purpose. Depressing one key causes the cursor to nove toward the right of the nonitor screen. The other key noves the cursor to the left. Single keystrokes nove the cursor one character block; however, if the key is hel d down, the cursor speed counter noves the cursor at a steady rate until the key is rel eased.

As the cursor speed counter controls the speed of novement, the cursor control ci rcuit nakes these commands available to the data bus. The output of the cursor control circuit is a level si gnal generated by either key. Hol ding the key down for nore than 300 nsec causes the cursor speed counter to generate a 30 Hz pul se, and this is fed into the data bus via the cursor control circuit $1 / 0$ gates.
(2) Data multipl exer. The data multiplexer takes data fromthe standard programinterface, and keyboard data from the keyboard. This dat a is then sel ected and transferred to the character generator board. The erase circuit operates when the four bottomlines on the nonitor are transferred to the top. Pri or to this taking place, the erase circuit erases the top four lines. While this is taking place, the ERASE input to the data multiplexer disables both inputs, and outputs all zeros to the di spl ay nenory, to clear the menory.

ERASE is initiated by a command from the character generator board. It is termi nated by another command from the same board. Thi s END ERASE si gnal is generated on the character generator board after the fourth line has been erased.
(3) Roll control circuit. The roll control circuit causes the bottom four lines on the monitor to be transferred to the top four lines, and the top four lines, whi ch have just been erased, to the bottom four lines. This is achi eved by nodifying the Y -field addressing to the di spl ay menory. The roll control circuits generate the ROL si gnal and transmit it to the character generator board. Thi s si gnal initiates the address modification. The address remains nodified until the next ROLL command is recei ved when it returns to its unnodified node.

Nbte that the data has not been noved; only the sequence of di splaying the inf ormation.

(4) Keyboard counter/load regi ster. The keyboard counter just counts keystrokes. These are transferred into the keyboard load regi ster when the register recei ves an accept command from the program This data is then passed via the $1 / 0$ gates to the data bus. The programthen goes to the keyboard buffer in the di splay menory, pulls out the character code stored there and displays it on the CRT screen. The program onl y sel ects those codes contai ned in the keyboard load regi ster whi ch acts as a buffer. There are two buffers; while the programtakes character codes out of one, the operator can continue typing and loading infornation into the other.
m. D/A stepper board J11. The board is di vided into the following functions:

Program Interface
FI ash Intensity Control
Clock Interface
Row Shift Stepping Control
(1) Programinterface. Acts as a four-regi ster storage with associ ated buffers. Recei ved infornation is buffered and then placed on the data bus.
(2) Flash intensity control. This circuit controls the intensity of the flash as a function of type size. Character width infornation is recei ved from the main program and stored in the register. The infornation is then loaded into the

D/ A converter and a voltage proportional to the character width is produced. This vol tage is then passed to the flash power supply where it is used to control the intensity of the flash; the larger the voltage, the greater the intensity of the flash.

(3) Cock interface. The cl ock interface on the board recei ves a 500 kHz si gnal from the program bus. The clock signal is counted down by a four-stage counter to obtain the various frequencies required to drive all the stepping notors. The outputs are buffered and then bused via the motherboard to the LVC stepper, carriage escapenent and font interface boards.

(4) Row shift stepping control. This circuit controls the compl ete sequence requi red to change fonts by noving the font disc. The nain program determines the number of steps that the font disc stepping notor will be required to take. This information is passed to the row sel ect step/ del ay control counter. The di rection in which the nove is to be made is decoded and fed to the row sel ect notor sequencer. When a START command is recei ved by the START CONTROL, it renoves a HOLD si gnal from the row sel ect step/ del ay control counter and, at the same time, the sync control is enabled. The systemis now in a stepping node. The $\mathbf{2 5 0} \boldsymbol{H z}$ pulse starts the row sel ect notor sequencer, and the row sel ect step/ del ay control counter begi ns to decrenent the val ue originally set by the programinstruction. The output pul ses to the dri ver board will terminate only when the input pulses to the row sel ect notor sequencer end. Input pulses continue until the row sel ect step/del ay control counter is empty. At this point, it resets the step/ del ay control counter, in turn resetting the sync control,stopping the stepping sequence.

The row sel ect step/ del ay control counter now begins to count up the 1 kHz input, every pulse into the counter representing 1 nsec . When the counter reaches 64 (64 $\mathrm{nsec})$, the step/ del ay control counter resets, terminating all stepping and del ay counting activity. The resetting of the system after the 64 millisecond del ay, renoves an INHBT signal to the program which allows the next sequence of operations to begin.

LVC stepper board J 14. This board contains logic circuits which control the following functions:

Variator or Enl arging Lens Control
Collinator Lens Control
Leadi ng Mbtor Control
Clock Interface
Power On Reset

(1) Variator or enlarging lens control. This circuit operates in a similar fashion to the font row shift control. The start control circuit initializes the sequence of events when a START conmand is recei ved from the program The anount of novenent, or number of notor steps requi red, al ready has been passed to the start-stop-step-del ay logic. The START control rel eases an INHBT signal to the start-stop-step-del ay control placing it in the stepping node. At the sane tine, the sync control is enabled allowing 500 th pul ses to be fed to the notor sequencer. The direction in which the lens is to nove was passed fromthe programin code to the FORMARD/ REVERSE DECODE logic, and fromthere to the not or sequencer. The notor sequencer now comences to output drive signals to the notor via the min driver board.

Each time that the notor steps, the total step count, as set by the program is decreased by one. As the I ast pulse is reached, the start-stop-del ay Iogic inhi bits further pul se action by stopping the sync control. At this point, the stop-startdel ay Iogic goes into the del ay node, and begins to count the 1 kHz pul se out put of the sync control. When the required del ay is reached (1 pulse $=1 \mathrm{nsec}$), the logic generates a DELAY COMPLETE pul se, and places the entire logic block into a WAI T condition. The START CONTROL Iogic inforns the program of this condition via the INPU/ OUTPUJ logic and the data bus. Other information passed via the INPU/OUPUT logic covers the condition of the collimator and leading notors.
(2) Collimator lens control. This is nearly identical to the preceding control descri ption, the only difference being the functional description of the STOP and START commands from the program
(3) Leading notor. This circuit is similar to the VAR ATOR and COLII MATOR circuits; there are two differences:
(a) Poner to the leading notor is not shut off at the end of the STEP/ DELAY sequence. At the compl etion of novenent, the dri ver board hol ds 50 -percent pover to the notor coils. This ensures that the filmor paper maintains its position.
(b) The I eading notor nechani sm has a filmout switch which passes this information to the program via the data bus.

(4) Clock interface. This circuit takes the 1 kHz cl ock out put from the not herboard and generates the 500 and 250 Hz si gnal s requi red for the steppi ng notor circuits.
(5) Power on reset. This circuit determines whether an interrupt has been caused-by power turn-on or by RESET key depression. This allows the program to determine if RAM data must be rel oaded.

0. Carriage escapenent board J12. Can be di vided into four nain operational groups:

Cl ock Interface
I nstruction Decoding and 1/0 Gates
Lens Constant Switches
Carriage Escapenent Mbtor Control System

(1) Clock interface. Consists of two main parts: the 500 kHz clock and the frequency divider. The frequency divider counts the 500 kHz clock down to the 50 kHz clock output and the 5000 Hz output. These clocks are used to step the carriage notor and carriage setting del ay.

(2) I nstruction decoding and $1 / 0$ gates. The main information requi red to nove the carriage escapenent stepper notor is recei ved from the D/A stepper board vi a the notherboard bus. These signals are decoded, and then serve to load the carriage steps. In addition to the number of carriage steps required, the del ay settle tine is set. This function has two nodes: the normal node and the proof node.
(a) In the normal node, the amount of time between carriage commands is 10 nsec (setting del ay).
(b) In the proof node, this time is reduced to 3.3 sec . Thi s reduction is achi eved by a command to the not or step/ del ay counter to reduce del ay. When the I atter node is sel ected, the composing machi ne will operate at higher speed but with a loss of copy quality.
(3) Lens constant switches. Because the optical systens bet ween composing machi nes cannot be identical due to differences in the lens tol erances, the positions of the variator and collinator lenses in the optical path will vary slightly bet ween machi nes. Each optical system therefore, requires correction constants to alter the position of the lenses in the systemto produce correct size and focus of the characters. The correction constants are stored in two 8-bit switches nounted on this board, the 16 indi vidual rocker switches are placed in the ON or OFF position depending upon the correction factor required. As these settings are uni que to each composing machine, they are recorded on a chart which is located in the photo unit. The information from each switch is read by the program via the i nstruction decoding and $1 / 0$ gates and the data bus.

(4) Carriage escapenent notor control system Is the main part of this board, and is similar in operation to the other stepper notor control boards. The number of notor steps required to nove the carriage the correct di stance are fed into the notor step/ del ay counters from the program via the D/A stepper board, notherboard data bus and the instruction decodi ng and $1 / 0$ gates. At the same time, the normal or proof node and the FORMARD REVERSE commands are processed, toget her with an instruction to the step magnitude circuit indicating that nore or less than 32 steps are requi red.
(a) The steppi ng notor, used to control the escapenent carriage, is capable of stepping at 5000 steps/ see but it is not capable of starting or accurately stoping at this rate. To overcone this problem the stepping rate is increased and decreased rel ati vel y sl owly when starting and stopping the stepping not or.

(b) The profiles of stepping accel eration and decel eration are stored in tuo PRONG. The step profiles are generated by testing the stepping notor under gi ven loads.
(c) The step profiles are different depending upon the number of steps to be taken. Each PROM contains 16 different step profiles. PROMI covers steps 1 thru 15 and PROM II from 16 thru 32. For a gi ven number of steps, the scanni ng counters select the correct profile and output the step pulses according to that profile.
(d) The step pulses generated by the step profiles are fed to the notor sequencer and notor step/del ay counters via a gate. The notor step/del ay counters count down as the notor sequences steps. This continues until the total number of step pul ses have been outputted to the notor sequencer, and the counters are at the zero count. The setting del ay node is activated at the zero count and, when it is compl eted, the carriage escapenent notor control is ready for another series of steps.
(e) The selection of the correct step profiles depends upon the step count. If the total step count is 32 steps or lower, the scanning counter will be I oaded with the starting address of the appropriate PROM step profile. The counter scans through the PROM and outputs the steps to the notor sequencer and the notor step/ del ay counters via the gate.

(f) If the total step count is nore than 32, the notor step/ del ay counters are set to the 32-step profile. First this step profile delivers 16 acceleration steps to both the notor step/ del av counters and notor sequencer. At the completion of the 16 accel eration pulses, the 5000 Hz signal is applied to the notor step/ del ay counters and notor sequencer. The notor is now running at 5000 steps/see with the not or step/ del ay counters counting down at the same rate. When onl y 16 steps are remai ning, the decel eration sequence begins. The 5000 Hz pulse is shut down, and the scanning counter accesses the decel eration profile fromthe PROM At the com pl etion of the 16 decel eration steps, the zero condition in the counter starts the del ay sequencer and stops the stepping action.

(g) The escapenent carriage has a limit switch and a home switch, both of whi ch are gated with a forvard and reverse filip-flop. The out put of these gates is a stop steppi ng si gnal whi ch indi cates that the escapenent carriage has hit one of the Iimit switches. The CARRI AGE READY si gnal allows the escapenent carriage to nove away from a struck limit switch. All these signal s are passed through the $\mathbf{1 / 0}$ gates to the program data bus.

The final circuit on this board is the power shut of f to the carriage escapenent notor. When the ti ner detects that the not or has not been gi ven instructions to nove for approxi natel y 4 see, it shuts of f the enable signal of the two sequencing PROW, This renoves power from the carriage escapenent notor.

Font interface board III J13. Perforns the operations requi red for proper character sel ection from the character disc, width data and FLASH Iogic.
(1) Disc speed control uses the 5 mitz naster clock (MASCLK) which is gated through a di vide-by- 3 counter (counter 1). The output of counter 1 sets the range of speeds available. The out put of counter 1 divided by counter 2. The out put of counter 2 is controlled by counter 4 . The 5B07 si gnal loads FLXD1 thru FLXD4 into counter 4. This enables counter 4 to change the di vi sor of counter 2. The output of counter 2 is applied to counter 3. The output of counter 3 is a reference frequency used to control-the speed of the di sc (SPDREF). SPDREF is applied to Nand gates 2 and 3 . The amplified signal from the strobe track on the character disc is sent to the Font Interface Board III. This STBTRK si gnal is s fed into amplifiers 1 and 2, then to Nand gate 1 via JKflip-flops 1 and 2. The output of Nand gate 1 is a 200 ns pulse for every dark-to-clear transition on the disc. This output is fed to JK flip-flop 3. JK flip-flop 3 's output is fed to Nand gates 2 and 4 and Regi ster 1 . The outputs of Nand gates 2; 3, 4 and 5 are compared with STBEDG and the difference of the two frequencies controls the out put of register 1. This changes the disc speed until both frequencies are identical.
(2) Width sel ect data on the strobe track on the font di sc contains 112 sectors. Each sector is divided into 18 parts. The first 4 parts are opaque, the 5th clear, 6th and 7th opaque and the last 11 alternate in a black-and-white pattern.

The circuit that detects three consecutive dark di visions is called MP counter 5 . MP counter 5 generates an output pulse after 1-3/4 dark di visions have been detected. Therefore, a pulse-will be generated at the beginning of each sector. The other opaque di vi si ons of the sector are too short to allow MP counter 5 to ouput a pulse. Each transition and missing pulse is detected by FF1, 2 and 6 from the STBTRK si gnal. The output of FF2 produces a si gnal called SEDG+MP. Thi s represents every transition pl us the MP. The pul ses go through a di vide-by- 3 counter (counter 1). Each pulse output represents one-font. These pulses are fed-to counter 2 which keeps track of the font position. MP counter 5 is kept in a preset condition as long as the strobe track is clear. When a dark di visi on appears, MP counter 5 is rel eased. MP counter 5 is preset by the next clear position through FF3 via counter 2. When three dark di visi ons are detected, counter 2 will overflow and generate the MP. This di sc is desi gned so that DTATRK1 is opaque for 111 positi ons around the di sc adjacent to the MP. DTATRK1 is clear for only one sector. Gating MP and DTATRK1 generates an origin pulse. The origin pulse is generated when the first character position approaches the character flash window When this occurs, counters 4 and 3 are preset to 1 . Gating the MP with inverted DTATRK si gnal will produce three pulses. These pulses cause counters 3 and 4 to keep track of the disc position. The outputs of disc position counters 3 and 4 and font position counter 2 go into comparat ors (COMP) 1, 2 and 3 . The ot her inputs to the comparators are font position register R3 and disc position regi sters R4 and R5. The registers are loaded with $1 / 0$ instructions 5B04 and 5D04 (the disc position and font of the character whose widthis being requested). When the disc is in position to be read, two si gnal s, CHEQ and FEQ are generated. When si gnal 5D04 is present, it sets FF4. FF5 out put (VDTHLW goes hi gh on the next MP. The following si gnal s are required to al Iow data to be loaded into regi sters R1 and R2: FEQ SEDG+MP, WDTHALW and CK. The out put of Nand gate N4 produces properly ti ned and clocked si gnal s rel ative to the data-tracked signal so that data is properly loaded into the width regi sters (R1 and R2). The width registers hol d width data until 4704 Input Instruction (147) width of character from the program processes the information.

(3) Fl ash control circuit. To initiate a flash, three conditions must be satisfied:

Carriage must be Iow (CRRDY).
Fl ash Power Supply must be Iow (TDLY).
5D04 and FLXD8 si gnal s must be low
When these conditions are net, flip-flop F2 will set on the next MP si gnal. Nand gate 3 requi res two high inputs, CFEQ and flip-flop F2. This all ous a flash pulse on the first dark part to cl ear transition after the MP. The FP $=0$ si gnal sets flip-flop F3. This starts a 16 nsec tine del ay (TDLY) $=\varnothing$ to allow the flash power supply capacitors to recharge.

q. AC di stribution system Begins with the supply to the primary side of the mai n power transformer. Power is supplied through a double-pole switch, an 8 amp fuse and a noi se filter to the primary wi ndi ngs of the transformer. Both the switch and fuse are accessible to the operator. The 120 V supply is taken froma nornal grounded, si ngle-phase outl et with a rating of at least 10 amps. The constant vol tage transformer uses an input from 95-130 V, 60 Hz to provide a constant 120 V, 60 Hz .

The 18. 5 V ac center-tapped winding feeds bridge rectifier CR1 which produces +18 V and +9 V . Snoothing is provi ded by a capacitor Cl. Both the 18 V and 9 V supplies go to the +5 V regul at or on the power supply board. The 39 V ac center-tapped winding feeds bridge rectifier CR4, which produces +26 V , - 26 V and provides a 26 V return. Filtering is provided by capacitors C2 and C3. Both the positive and negative 26 V supplies go to the driver board.

Four secondary wi ndi ngs supply ac power to the power supply board and the input/ nonit or unit. The 30 V ac center-tapped winding supplies power to the $+12,-12,-9$ and -5 V regul ators on the power suppl y board, the 27 V ac winding going to the +24 V regulated supply circuit al so on the power supply board.

The input/nonitor unit recei ves two ac supplies: 80 V ac, which is used to supply the nonitor with all its power requirements, and 6.3 V ac, which is used specifically to power the heating filament of the CRT.

The main dc power supply can be di vided into three sections:
Terminal Regul at ors
High-Current, +5 V Supply
+24 V Circuitry

(1) Terminal regul ators. UB, U4 and U6 use an unregul ated ac supply from a 30 V ac center-tapped secondary wi ndi ng on the nai n power transforner. This ac voltage is rectified by the bridge rectifier and filtered by capacitors C16 and C17. Regulators UB, U4 and U6 convert this unregulated dc voltage to fixed dc voltages according to the output specifications. The unregul ated dc input does in fact provi de a mini mum of 13 V under full-Ioad conditions. Regul at or $\mathbf{U 4}$ is provided with an adj ust abl e resi stor-tri mer net work R36- R37 to set the out put at - 12 V . Diodes CR7 through CR14, between the input, output and return Iines, protect the regul at ors from reverse voltages that nay be caused by external system faults or transient condi ti ons.

(2) H gh current +5 V suppl y . The main hi gh power supply provi des +5 V at 24 amps with overvoltage protection and current limiting. The +5 V regulator gets the unregul ated dc vol tages frompins 5 and 7 for the hi gh-current section and pin 2 for regul ator U.
(a) Regul at or Ul compares the nain +5 V out put vol tage with a reference voltage and dri ves pass transi stor Q1 through emitter-follower $Q 4$ so that the tho voltages are equal. Regul at or $U 1$ is referenced to both the +5 V out put and the ground (grid) sense terminals. These are tied directly to the Ioad and bypass any losses in the wi nding.
(b) Pin 6 on regul at or Ul provi des a +7. 15 reference vol tage which is di vi ded by R7-R9. Tri mer R8 al lous an adj ust nent range from +4.6 to +5.4 V on regul at or U, pin 5. Regul at or Ul dri ves the out put so that the voltage on pin 4 equal sthat of pin 5. Si nce pin 4 is tied to the +5 V sense lines, and in turn to the LOAD, then the load voltage will equal the voltage set on pin 5 .
(c) Regul at or U1 is al so used in the current-seeki ng node. Pin 11 seeks a current proportional to the output demand. This current is sensed by the base of pass transi stor Q1, and its collector current dri ves the bases of emitter-followers Q2, QB and Q4. The emitters of these transi stors are tied together through 0.04 ohm resi stors to ensure current sharing.
(d) The 0.04 ohm resi stors are printed circuit-type and are located under the heat sink extrusion. For current limiting, the voltage between the collector of pass transistor $\mathbb{Q} 1$ and the +5 V out put terminal is sensed. This sets a bi as voltage on regulator Un, pin 2 with respect to Ul, pin 3.
(e) Trimer RI is adj usted so that there is 650 mV between pins 2 and 3 when the out put current is at the desi red maximm If the out put load is increased, then the voltage will decrease and the output current will also fall. With a full short-circuit across the output, the current will be about 30 percent of the maximum Resi stors R6 and R14 are provi ded for protection in the event of a break in one of the sense lines. They limit the output voltage to a level which will not danage the external system With both sense lines di sconnected, the output voltage will be approxi natel y 1 V above set value.

(f) Should a maj or fail ure occur, the full unregul ated voltage (+10 V) will attempt to reach the output terminals. At approxi natel y +5.6 V , zener di ode CR3 will conduct current to the gate of SCR-CR4 and trigger it. This shorts the out put terminals, and blows fuse F1 as the current-limiting circuit is ineffective in thi s situation.

(3) +24 V circuitry. The +24 V circuitry is similar in configuration to the +5 V supply but it supplies less current and has no overvoltage protection.
(a) The ac is supplied by a 27 V secondary winding on the mai n power transforner and is rectified by bridge rectifiers CR19, 20, 21 and 22. Filtering is provi ded by C4, which is nounted renote from the main board.
(b) The unregul at ed vol tage is di vided by R31, R33 and R34. Thi s powers regul at or U .
(c) Reference vol tage is provi ded at pin 6 from voltage di viders R19, R20 and R21. Tri mer R20 provi des a range from +2.4 to +3.6 V on pin 5. The output vol tage then equal s ER20 (ER25 + ER26)/ER26. With the output voltage set to +24 V, pin 5 vol tage is about +3 . $1 \mathbf{V}$.
(d) Pin 11 seeks a current proportional to the output denand. This current flows to ground through pin 10 and R34 and is sensed by the base of Q5, which dri ves the base of emitter-follower 06. Resi stors R22 and R24 bi as pin 3 so that with 650 mV between pins 2 and 3, the output current is 2.4 amps. Any increase in output load will cause the output current to be limited. A direct short will result in only 650 mA at the output.

TM 5-6675-316-14

Section II OPERATING INSTRUCTIONS

2-4. DESCRIPTION AND USE OF OPERATOR'S CONTROLS AND INDICATORS.
Function
Control or I ndi cator

Take-Up Cassette
Holds exposed photographic paper.

SUPPLY PAPER CASSETTE

Supply Paper Cassette

Contains 150 ft of unexposed photographic paper.

Foot age I ndi cat or

Reset Button

Copy Intensity Dial

Disc Turntable

Controls lightness or darkness of copy bei ng set photographically.

Located in consol e typesetter. Houses di sc.
Control or I ndi cator Function

Brightness Control
Located on undersi de of screen cabi net. Control s brightness of i mage on screen.

Fuse

Power Switch

8 amp fuse current overload protection.

Applies primary power to composi ng machi ne.

SEC LEAD (SL)

TAB

Cursor Left/Right

USE LEADER

SI NGLE ERASE

VORD ERASE

Addi tional leadi ng function for use between paragraphs, after headings or any other time value is needed which is different from stored pri nary leading val ue.

Used in manual mode for col ums. Col um length is expressed in picas.

Used to control di rection of cursor novenent.

Prints dots, dashes or ruled Iines between copy when depressed.

When depressed. erases l ast keyboarded character on line.

Erases last keyboarded nord.

CONTROL

CENTER

FLUSH R GTT

SH FT

FLUSH LEFT

RET

Space Bar

DATA

SH FT LOCK

EM SPACE (Mtt)

EN SPACE (Nutt)

Used in conj unction with ot her dedi cated and nondedi cated keys to store and access functions.

Centers copy bet ween left and right margins.

Positions copy to right of line neasure.

Upper case command tells typesetter all characters that follow are to be upper case.

Positions copy to left of line neasure.

When depressed, typesetter advances paper anount stored as primary I eadi ng val ue.

Moves typesetter to right.

Used to store and recal I programmable data segments. Up to 99 data storage segments available. Used with CONTROL key.

Locks SH FT key to upper case.

W dth: 18 uni ts. Widest standard fixed space used for indents, such as begi nni ng of paragraph.

W dth: 9 units. Used in conbi nation with EM SPACE for vari ed indents. Can be used to create larger nord space.

Control or I ndi cator	Function
RESET	Rel oads program Used to begin operation of system and al so to clear system of stored nenory.
FI XED SPACE	Access fixed space val ue in units, maxi mum 999.
SUPER SH FT	Used for snall caps, speci al characters, synbol s or superi or numbers. When depressed, SS appears on CRT. To release, press SUPER SH FT.
M NUS 1/2 UNT	Renoves 1/2 unit back space between any two characters. Generally empl oyed when usi ng larger poi nt sizes.
STORE PL (Store Primary Leadi ng)	Used to control anount of space bet ween Ii nes.
SI ZE	Expressed in points. Measurenent of size of letter.
LINE LENGTH	Distance between left and ríght nargins expresses in pi cas and points.
STORE SL (Store Secondary Leadi ng)	Leadi ng function whi ch can be used between paragraphs, after headi ngs or any other time value is needed which is different from stored pri mary leading value.
FONT	Contai ns compl ete al phabet, A-Z, in upper and lower case, numbers, punctuation and synbol s. Each di sc contains four fonts:
	FONT 1: Generally lighter nedi umfaced char acters

FONT 2: Italic characters of same type style. FONT 3: Bol df ace characters.

FONT 4: Vari es. Has matching or contrasting type style.

Contai ns compl ete al phabet, numbers, punctuation and symbol s .

2.5 OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES.

Bef ore You Operate. Al ways keep in mind the UARN NGS and CAUTI ONS. Perform you; bef ore (B) PMCS.
b. While You Operate. Al ways keep in mind the WARN NGS and CAUTI ONS. Perform your during (D) PMCS.
c. After You Operate. Be sure to perform your after (A) PMCS.
d. If Your Equi pnent Fails to Operate. Troubl eshoot with proper equi pnent. Report any deficienci es usi ng the proper forns. See DA Pam 738-750.

2-5.1 PMCS Procedures.

a. PMCS are desi gned to keep the equi pnent in good working condition by performing periodic service tasks.
b. Service intervals provide you, the operator, with time schedules that determine when to perform specified service tasks.
c. The "Equi pnent is Not Ready/ Available If" colum is used for identification of conditions that make the equi pnent not ready/available for readi ness reporting purposes or deni es use of the equi pnent until corrective nai ntenance is perforned.
d. If your equi pnent fails to operate after PMCS is perforned, imediately report this condition to your supervi sor.

Perform weekl y as well as bef ore operation if you are the assi gned operator and have not operated the itemsince the last neekly or if you are operating the item for the first tine.
f. Item nunber col um. I tem numbers are assi gned in chronol ogi cal ascendi ng sequence regardless of interval desi gnation. These numbers are used for your "TM Number" Col um on DA Form 2404, Equi pnent Inspection and Mai ntenance Wbrksheet in recording results of PMCS.

I nterval col ums. Thi s col um determines the time period desi gnated to perform your PMCS.
h. Item to be inspected and procedures col umm. This col um lists functional groups and their respective assemblies and subassenblies as shown in the Mai ntenance Allocation Chart (Appendix B). The appropriate check or service procedure follows the specific item to be inspected.
i. Equi pnent is not ready/ avai I able if: col um. This col umn indi cates the reason or cause why your equi pnent is not ready/ available to performits primary mission.
j. List of tools and naterials required for PMCS is as follows:

Item
Vacuum Cl eaner
Cheesecl oth (Item 6, Appendi x E)
Canel Hair Lens Brush
Pail
Li qui d Detergent (Item 9, Appendi x E)
Naphtha (Item 14, Appendi x E)
Cotton Pads (Item 7, Appendi x E)

Quantity
1 ea
ar
1 ea
1 ea
ar
ar
ar

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES

NOTE

If the equi pnent must be kept in continuous operation, check and service only those itens that can safel y be checked and servi ced without di sturbing operation. Make the complete checks and services when the equi pnent can be shut down.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B - Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D - During	M Monthly	S - Semiannually	
A. After	Q - Quarterly	BI - Biennially	

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & \text { B - Before } \\ & \mathrm{D}-\text { During } \\ & \mathrm{A}-\text { After } \end{aligned}$			
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	IN. TERVAL		
3	W	COMPOSING MACHINE - Cont Clean Composing Machine. 1. Remove copy aid. 2. Use cheesecloth moistened with detergent and water to wipe top left panel and side panels. 3. Use dry cheesecloth to dry top left panel and side panels. 4. Grasp take-up cassette and pull gently upward to remove. 5. Use camel hair brush to remove loose dust and dirt around paper take-up area.	

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B - Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D - During	M - Monthly	S - Semiannually	
A - After	Q - Quarterly	BI - Biennially	

| ITEM |
| :--- | :--- | :--- | :--- | :--- |
| NO. | | IN- |
| :--- |
| TER- |
| VAL |\quad ITEM TO BE INSPECTED \quad PROCEDURE \quad| For Readiness |
| :--- |
| Reporting, |
| Equipment Is |
| Not Ready/ |
| Available If: |

Clean Composing Machine - Cont

6. Use vacuum cleaner to remove any dust and dirt in take-up cassette area.
7. Replace take-up cassette.
8. Grasp input/monitor unit and place on top left panel.
9. Use cheesecloth moistened with water and detergent to clean input/monitor unit shelf.
10. Dry input/monitor unit shelf with dry cheesecloth.

11. Use cheesecloth moistened with detergent and water to wipe exterior of input/monitor unit.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cent

$\begin{aligned} & B-B \\ & D-D \\ & A-A \\ & \hline \end{aligned}$	fore	W - Weekly AN - Annually M - Monthly S Q- Quarterly BI - Semiannually 	(Number) - Hundreds of Hours
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	INVAL	ITEM TO BE INSPECTED PROCEDURE	For Readiness Reporting, Equipment is Not Ready/ Available If:
3	W	COMPOSING MACHINE . Cont Clean Composing Machine - Cont 12. Dry exterior of input/monitor unit with dry cheesecloth.	Moisture remains inside the equipment. Input monitor unit is dropped.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & B \cdot B \\ & D: B \\ & \mathbf{A}: A \end{aligned}$		W - Weekly AN : Annually M - Monthly S Q - Semiannually Quarterly BI - Biennially	(Number) . Hundreds of Hours
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	IN. TER- VAL	ITEM TO BE INSPECTED PROCEDURE	For Readiness Reporting, Equipment is Not Ready/ Avaitable If:
4	M	COMPOSING MACHINE - Cont Clean Font Disc. 1. Place all discs in convenient location.	

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

7. Check that power switch is OFF.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

$\begin{aligned} & \text { B - Before } \\ & \text { D } \mathrm{During} \\ & \text { A - After } \\ & \hline \end{aligned}$		W- Weekly AN - Annually M - Monthly S Q Quemiannually	ndreds of Hours
ITEM	$\begin{aligned} & \text { IN. } \\ & \text { TER- } \\ & \text { VAL } \end{aligned}$		For Readiness Reporting, Equipment Is Not Ready/ Available If:
5	M	COMPOSING MACHINE - Cont Clean Paper Magazine - Cont	

18. Insert edge of paper or film behind first roller behind box.
19. Be sure knobs on cassette fit into slots.
20. Push cover down.
21. Roll thumb dial 5 to 6 times.
22. Pull up on locking latch.
23. Turn paper feed knob right. If thumb dial starts to turn, paper/film is loaded correctly.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

25. Press RESET and DATA, and fill in function fields.
26. Press CONTROL and e.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

B - Before	W - Weekly	AN - Annually	(Number) - Hundreds of Hours
D - During	M - Monthly	S - Semiannually	
A - After	Q - Quarterly	BI - Biennially	

Clean Cassette Assembly.

1. Remove take-up cassettes from storage containers.
2. Place take-up cassettes in convenient location.

NOTE

Be sure all take-up cassettes are empty. Do not remove take-up cassette from composing machine.
3. Release two latches on take-up cassette and separate cover from base.

Table 2-1. OPERATOR PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

	Before During After	W - Weekly AN : Annually (Number) M : Monthly S : Semiannually Q - Quarterly BI : Biennially	undreds of Hours
$\begin{gathered} \text { ITEM } \\ \text { NO. } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { IN- } \\ & \text { TER- } \\ & \text { VAL } \end{aligned}\right.$	ITEM TO BE INSPECTED PROCEDURE	For Readiness Reporting, Equipment Is Not Readyl Available If:
6	M	COMPOSING MACHINE - Cont Clean Cassette Assembly - Cont 4. Use cheesecloth to wipe coil springs, divider plates, light seal and interior of cover assembly. 5. Attach cover to base. 6. Secure two latches. 7. Wipe exterior of take-up cassette with cheesecloth moistened with water. 8. Repeat steps 3. through 7. with remaining take-up cassettes. 9. Store take-up cassettes.	

2-6. OPERATION UNDER USUAL CONDITIONS.

2-6.1 Assenbly and Preparation For Use.

a. Install Disc.

(1) Raise top left panel on typesetter.

(2) Be sure power switch is OFF.

(3) Sel ect proper di sc for job.
(4) Open di sc box.

CAUTI ON
Do not touch disc. Do not lay disc on any surface. Danage to di sc could result.
(5) Grasp knurled knob and renove di sc from box.

(6) Insert di sc into guide slots and engage di sc spindle.
(7) Hold plastic handle and tighten knurled knob to di sc spindle.
(8) Spin di sc to assure it spins freel y.
(9) Inspect visually to be sure di sc is between guides.

NOTE
If this is first tine the system has been used, set copy intensity dial to 2. Sel ect a hi gher number to darken.
b. Set copy intensity dial to desired setting.

Check that input/nonitor unit cable is connected to connector beneath input/ noni tor unit shel f.
d. Sel ection and installation film cassette.

(1) Sel ect desi red cassette and pull 1.25 to 1.75 in. (3.18 to 4.45 cm) of paper from cassette.
(2) Cut edges to al low for easy feeding into rol 1 ers.
(3) Qpen front cover.
(4) Move handle down.
(5) Depress locking I atch, rai se paper hol ddown and hol din position.
(6) Install film cassette and close paper hol ddown.
(7) Turn up thumb dial 5 to 6 times.
(8) Move I ocking I atch up.
(9) Turn paper feed knob left until paper is visible through exit sl ot located in cover shroud.
(10) Cl ose front panel door.

NOTE
Be sure that flat side of cassette faces rear.
(11) Instal I take- up cassette in space provi ded.

e. Place copy aid in position so that original can be read.

f. Turn on power switch.

g. Close top left panel.

2-6.2 Operating Procedures.

a. Preliminary procedures.

(1) Press recessed footage counter button with pencil tip to reset counter to 0.

(2) Press RESET and DATA

(3) Adj ust brightness control for desi red image.

SIZE Font Lp PL stm Aacle

b. Set type size.

NOTE

- Function field entries will be displayed in function field and typing line.
- Type sizes available are:

5. 5, 6, 7, 8, 8.5, 9, 10 and 11 thru 74 except 55.

SIZE	1	\varnothing	$=\operatorname{size} 1 \chi^{\prime}$
SIZE	\varnothing	6	$=$ SIZE 6
SIZE	9	5	$=$ SIZE 91/2
SIZE	7	4	$=$ SIZE 74

(1) Press $\mathrm{SI} \mathbb{Z}$ followed by tho di gits.
(2) Point size is recorded in function field and di splayed on typing line.

SIZE 19 FONT LPQP PL SL A ACL
LR JS LS LO FS TAB

c. Set type style.

(1) Press FONT followed by one digit for type style.

NOTE
Digital entries will be di splayed on function field and typing line.
d. Set Iine I ength.

LL	3	5	\varnothing	ø	$=\mathrm{LL} 35$ PICAS
LL	\varnothing	6	\varnothing	\varnothing	$=$ LL 6 PICAS
LL	\varnothing	8	\varnothing	3	$=\mathrm{LL} 81 / 4$ PICAS
LL	4	\varnothing	\square	8	= LL 40\% PICAS

(1) Press LINE LENGTH

NOTE
Maxi mum line length is 45 picas for all point sizes.

> 12 points $=1$ pica
> 72 points $=1$ in.
> 6 pi ca= 1 in.

Point on Comp/ Set = Ø. Ø1384 in.
(2) Press four digits for line length in picas.
e. Set primary leadi ng.
(1) Press STORE PL key.

NOTE

First two numbers equal full points and third equal s 1/2-point leading. Enter 0 if $\mathbf{1 / 2}$ - point leading is not required. Only primary leading is di spl ayed in-function fiel d.
(2) Press three di gits.
f. Set secondary leadi ng.

(1) Press STORE SL.

NOTE

First tuo di gits equal full points. Third digit equal s 1/2-point. Secondary leading is di splayed in function field.
(2) Enter three di gits.
(3) Press RET. Wit 5 sec .
g. Advance paper.

(1) Press CONTRO and E.
(2) Press RET.
h. Set tabs.

NOTE

Steps a. through f. must be completed first.

NOTE
Numbers 01-99 are available as tab numbers. Tab inf ornation should i ncl ude:

Si ze
Font
Li ne Length
Fl ush left, center or right
I ndent left, right or both
Repetitive characters or fixed spaces
Pri nary leading
Secondary I eading
(3) Store first tab by pressing CONTROL, TAB and two digits.

NOTE

- If error is made, press SI NGLE ERASE.
- When you store tab information it is di splayed on screen as you keyboard it.
- Marker is di spl ayed by ACL.
(4) Type functions/ characters to be stored.
(5) Press TAB if di splayed infornation is correct.
(6) Repeat steps 3, 4, and 5 for each tab col um.
(7) After storing tabs, press TAB to be sure information is correct.
(8) Al information stored on TAB \varnothing_{1} will be di splayed.
(9) To check infornation on other tabs, continue to press TAB.
(10) If tab inf ornation is correct, press RET. If tab has incorrect data, perform following steps.
(a) Press CONTROL, TAB and number (i ncorrect data).
(b) Type correct information.
(11) Press TAB.
(12) Press RET. Vitit 5 sec .
i. Accessing tabs.

(1) Press CONTROL and M
(2) Press TAB. Information stored in tab 01 is displayed.
(3) Type text for tab 01 and press TAB.
(4) Information displayed is for tab \varnothing.
(5) Type text for tab \varnothing_{2} and press TAB.
(6) Repeat tab, text-tab operation until last tab.
(7) After typing text for last tab, press RET. Wait 5 sec.
j. Override stored tab. The two following steps may independently be used to override stored tab.
(1) Upon reaching tab position where override is to be made, type changes al ong with desi red text.
(2) Erase text or functions di spl ayed for tab position.
k. Tab i ndexi ng.
(1) Check that you are in manual node. (Press CONTROL and M)

(2) Press CONIRO, o and tab number. Then press TAB.
(3) Typesetter starts tab job with information stored in sel ected tab.
(4) Starting position can be changed by pressing CONTRO, 0 , and appropriate two-digit tab number. Then press TAB.

1. Justification. There are tno nodes available with composing machine.

Aut onatic Manual
(1) The aut onatic node is al ways active when composing machine is turned on or if RESET and DATA are depressed.

(a) An A in the function fieldindicates the autonatic node is active. The autonatic node deci des where to end a justified line. As characters are keyboarded, character widthis subtracted from the overall line length. When characters keyboarded exceed the line length, the composing machi ne aut onatically converts the I ast hord space into a return and carries the word (overset) that would not fit on the line to the next line.

(b) If a word that overset the Iine is a long uord and there is not a word space in the justification zone, the composing machi ne will switch to the manual node, indi cate an overset condition and wait for the operator to deci de how to end the line. The operator can erase the overset uord using VORD ERASE, retype part of the word until the justification blinker cones on and enter a hyphen/ return at the appropriate point. When RET is entered, the composing machi ne goes back to the aut onatic node. Another approach is to erase the entire line and ei ther decrease mini mum word space, i ncrease maxi mum word space or use white space reduction or white space addition to enable the line to justify.

(2) In the manual mode, the operator deci des when to end a Iine. When enough characters and word spaces have been entered on a line for the line to justify, a narker appears and a beep is sounded indicating the start of the justification zone. At the same time, the line renai nder (LR) in the function fieldindicates the number of units remaining in the line. As you continue to keyboard, the LR counts down. When the remaining space is too small to enter the next word, enter a RET.
(3) The autonatic node is usually faster when producing justified copy. Because end- of-Iine decisions are made by the composing machine, the operator can concentrate on typing accuracy. The nanual node allows the operator to exam ne the line before allowing it to be set, thus, allowing complete control over how a line l ooks.
m Store data.

NOTE

- The following informati on concerns storing data. Thi s, data can be text, text and function conbi nations, or just functions.
- Inf ormation that is repetitive in nature, such as logo, address block, or frequently used long name, can be stored.

(1) Press CONTRO and M
(2) Press CONTROL, TAB, ØØ and VORD ERASE.
(3) Press CONTROL, DATA and two di gits (01-99) for data block address.

NOTE

You can type up to 251 characters in any data bl ock. Data information shoul d i ncl ude:

```
- Si ze
- Font
- Li ne Length
- Pri mary l eadi ng
- Secondary I eadi ng
```

(4) Type in information for that data block. Typed information will appear on typing line.
(5) If there is error, press SI NGLE ERASE and type in correct information.
(6) Press DATA
(7) St ore remai ni ng data bl ock by repeating steps (3) through (6).
(8) As final check on data stored, press DATA and two digits to access data.
(9) Data and functions will be di splayed on screen.
(10) Repeat step (8), if desi red, to check all other data areas.
(11) If infornation is correct, press RET. If there is error, perform following steps.
(a) Press CONTROL, DATA, and the block number with error.
(b) Retype information.
(c) If infornation is correct, press RET. Wait 5 sec .
n. Access data.
(1) Check that you are in manual node (CONTROL m).
(2) Press DATA and number of data menory.
(3) Information stored in data area is di splayed on screen and automatically typeset according to specifications.
0. Use stored data and stored tabs together.
(1) Press TAB until desi red number is reached.
(2) Press DATA and desi red dat a number.
p. Changing di sc.

NOTE

Disc can be changed between typeset lines, not between words.

(1) Place empty di sc box in conveni ent location.

(2) Qpen top left panel.

(3) Grasp plastic handle.
(4) Loosen knurl ed knob.
(5) Use knurled knob to slide disc to right and out.
(6) Pl ace di sc in empty box.
(7) Place di sc box in proper storage area.
(8) Sel ect proper disc.
(9) Place di sc box in conveni ent location.

(10) Open di sc box.
(11) Grasp di sc by knurled knob and renove from box.

(12) Grasp di sc by plastic handle.
(13) Insert I eft edge of disc into sl ot.
(14) Ti ghten knurl ed knob.
(15) Use knurled knob to spin disc. If it noves easily, it is installed correctly.
(16) Close top left panel.
(17) Close and Iatch empty di sc box.
(18) Stow empty di sc box in proper storage area.
q. The following table lists all CONIROL key functions. If CONIRO is accidentally pressed, press CONTRO again to cancel-command.

Table 2-2. CONTROL FUNCTIONS

Function	Control $=\hat{@}$
Automatic mode	$\hat{@}^{\text {a }}$
Manual Mode	\hat{O}^{m}
Store New Disc Widths	$\hat{@}^{y}$
Line Length Flag - Pica/Points	$\hat{@}^{\text {d }} 0$ (LL\#\#\#\#)
Line Length Flag - Units	$\hat{@ c}_{\text {d }} \mathbf{2}$ (LL \#\#\#\#)
Line Length Flag - Ciceros/Points	$\hat{@}_{\text {© }} 11$ (LL \#\#\#\#)
Minimum Word Space Change	$\hat{@}^{n} \#$
Maximum Word Space Change	$\hat{@}^{x} \# \#$
Letter Space Change	$\hat{\text { © }}$ s \#
White Space Addition	$\hat{\text { @ }}$ ¢ \# ($1 / 8 \mathrm{~S}$)
White Space Reduction	$\hat{\text { © }} \mathrm{r} \#$ ($1 / 8 \mathrm{~S})$
Store Leader Character	© USE LEADER (Character)
Leader Width Change	© ${ }^{\text {W \#\# }}$
Store Fixed Space	$\hat{\text { © }}$ FIXED SPACE \#\#\#
Single Fixed Space	$\hat{\text { © }}$ \#

Table 2-2. CONTROL FUNCTIONS - Cont

Function	Control $=\hat{\text { @ }}$
Indent Left	$\hat{@}$ FLUSH LEFT \#\#\#\#
Indent Right	$\hat{@}$ FLUSH RIGHT \#\#\#\#
Indent Both	@ CENTER \#\#\#\#
Cancel indents	\bigcirc © CENTER 0000
Repeat Line (Manual Mode Only)	© RET
Add Lead	\hat{O}
Reverse Carriage Sequence	$\hat{@}$ MINUS $1 / 2$ UNIT
End of Job	$\hat{O}^{\text {e }}$
Cancel Line	$\hat{@ C l}^{\text {c }} 1$
Clear ACL	$\hat{\text { © }} \mathrm{k}$
Paper Index (Film/RC)	$\widehat{\text { © }} \mathrm{p} \emptyset(L \mathrm{LL} \# \# \# \#)$
Paper Index (Standard)	© O 1 (LL \#\#\#\#)
Insert Widths (Parity Error)	$\hat{@}^{\mathbf{i}}$ \#\#\#
Reread Widths (Parity Error)	$\hat{@}^{\text {® }}$

NOTE

The following procedure is used to prevent loss of stored data.
r. Repl ace paper cassette with power on.

(1) Grasp handle on take-up cassette and gently pull forward.
(2) Pull small lever at top right corner.
(3) Front panel will swing down.
(4) Cut paper/filmedge on new cassette to approxi mate y 2 to 3 in. (5. 08 to 7.62 cm).

(5) Rotate cl osing I atch handle downward.
(6) Press latch lever downuard to rel ease paper hol ddown.
(7) Lift paper hol ddown to full open position and hold.
(8) Insert paper box into magazi ne.
(9) Be sure spi ndl es are firmy seated in support plates.
(10) Leading edge of paper should face up and sit on top of lower rear 0.5 in . $(12.7 \mathrm{~mm})$ roller.
(11) Lower paper hol d down and press closed.
(12) Lock cl osing I atch handle.
(13) Rotate thumb di al 5 to 6 times.
(14) Close front panel.

(15) Press CONTROL and E.
(16) Cut exposed paper and di scard.
(17) Repl ace take-up cassette.

to 0 .
(18) Use pencil tip to depress recessed footage counter button to reset counter
S. Process procedures.
(1) Press CONTRO and E.
(2) Depress paper cut off handle.
(3) Grasp handle of take-up cassette and gently pull forward.

(4) Pul I approxi mately 1.00 in . (2.54 cm) of paper out of take-up cassette.
(5) Take take-up cassette to area where it can be processed.
(6) Install empty take-up cassette on typesetter.

2-6. 3 Preparation for Movenent.

a. Press CONTROL and E.
b. Open top left panel.
c. Pl ace empty di sc box in conveni ent location.

d. Grasp plastic handle.
e. Unscrew knurled knob.
f. Use knurled knob to slide disc to right and out.
g. Place disc in empty box.
h. Place disc box in proper storage area.

i. Place power switch to OFF.
j. Close top left panel.
k. Store accessories.

1. Secure strap across top of machi ne.
m Turn off circuit breaker.

2-6.4 Operating Instructions on Decal s and Instruction Plates.

PAPER LOADING

1. CUT PAPER APPROXIMATELY 1\%" - 1\%" FROM TOP OF MAGAZINE 1.
2. ROTATE CLOSING LATCH HANDLE 2 to downward position.
3. PRESS LATCH LEVER 3 dOWNWARD TO RELEASE APPER HOLD DOWN.
4. LIFT PAPER HOLD DOWN 4 TO FULL OPEN POSITION AND HOLD.
5. INSERT PAPER BOX INTO MAGAZINE.
A. INSURE THAT BOX SPINDLES 5 ARE FIRMLY SEATED IN SUPPORT PLATES.
B. LEAD EDGE OF PAPER SHOULD FACE UP AND SIT ON TOP LEAD EDGE OF PAPER SHOULD FACE UP
OF LOWER (REAR) \& INCH DIA. ROLLER.
a. LOWER PAPER HOLD DOWN 4 AND PRESS CLOSED. CLOSING LATCH 2 MUST ENGAGE CAM SHAFT TO PREVENT REOPENING OF GATE.
6. ROTATE KNURLED THUMBWHEEL 6 IN DIRECTION OF ARROW AND VIEW PAPER AT EXIT SLOT.
7. ROTATE CLOSING LATCH 2 handLE UPWARD TO SOTP POSITION.
8. see manual for receiving cassette instructions.

a. DI SC I NSERTI ON instructions are located under the top left panel near the power switch and turntable.
b. PAPER LOADI NG i nstructions are located on the front panel. These provi de instructions for loading photographic paper.

c. HGH VOLAGE warning located on side of flash power supply.

CAUTION

Do not operate machine without disc(s) in place. Close cover before operating machine.
d. CAUTI ON I abel I ocated inside top I eft panel.

2-7. OPERATION UNDER UNUSUAL CONDITIONS. The composing machi ne is desi gned for operation only in a controlled envi ronment.

2-8. LUBRICATION INSTRUCTIONS. This equi prent does not require lubrication at this l evel of mai ntenance.

2-9. TROUBLESHOOTING PROCEDURES.

a. The table lists the common malfunctions you nay find during operation or maintenance of the composing machi ne or its components. You should perform the test/inspections and corrective actions in the order listed.
b. This manual cannot list all malfunctions that may occur, nor all of the tests or inspections and corrective actions. If a malfunction is not listed or corrected by listed corrective actions, notify your supervisor.

Table 2-3. TROUBLESHOOTING

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON

1. MACH NE SONDS PROLONGED BEEP AND, AFTER TYPI NG A FEW CHARACTERS, KEYBOARD LOCKS .

Check contents of paper cassette.
Insert photographic paper and reset counter.
2. LI NES ARE NOT PROPERLY JUSTIFIED.

Step 1. Check if size or font changes entered after entering reverse carriage function.
(a) If entries correctly made, proceed to step 2.
(b) Enter size or font change prior to entering reverse carriage function.

MALFUNCTI ON
TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
2. LI NES ARE NOT PROPERLY JUSTI FIED - Cont

Step 2. Check that corrections are entered on line after entering reverse carriage function.
(a) If corrections entered properly, proceed to step 3.
(b) Make all corrections on line before entering reverse carriage function.
(c) Cancel entire Iine and retype it correctly.

Step 3. Check if justified space was attempted to be used within reverse carriage sequence.
(a) If entries were properly made, proceed to step 4.
(b) If two or nore words are typed, use fixed space bet ween them Fi xed space of six units is desi rable nord space.

Step 4. Check for runover left on typing line.
Clear I ast I ine and enter end- of-job command.
3. PROLONGED BEEP SOUNS DO NOT STOP.

Check to see if internal composing nachine temperature is too high for reliable operation,
(a) End job within one minute and turn off composing machine.
(b) Notify direct/general support nai ntenance.
4. UNMANIED CHARACTERS ARE APPEARING ON DI SPLAY AND RANDOM COMMAND ARE BEI NG EXECUTED.

Check for unstable 120 V ac.
Notify di rect/general support mai ntenance.

Table 2-3. TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON

CORRECTI VE ACTI ON
5. LIGT LEAKS ON PHOTOGRAPH C PAPER.

Step 1. Check to see if power supply panel is properly closed.
(a) If closed, proceed to step 2.
(b) Close panel.

Step 2. Check if take-up cassette is properly nounted.
Ensure that take-up cassette is clipped tightly to back netal plate.
6. CURSOR WLL NOT MDVE DUR NG AFTER COMMANDS.

Check for i mproper keyboarding of cursor commands.
Make certai n command and correct number of di gits are entered.
7. NO COMMANDS I N TAB/ DATA STORAGE.

Check to see if upper case commands/ di gits used.
Use I ower-case commands/ di gits.
8. FOOTAGE I NDI CATOR READI NG REMA NS CONSTANT.

Check to see if paper \mathbf{j} am has occurred.
Clear paper jam
9. DENSI TY OF COPY IS LOW

Check to see if lens is dirty.
Clean I ens.

Table 2-3. TROBBLESHOOTI NG - Cont
MALFUNCTI ON
TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
10. FOCUS IS POOR.
Check for smudges on lens and mirror.Clean I ens and mirror.
11. FONT OR COMMAND IS DI FFERENT FROM KEYBOARDED I NFORMATI ON
Check for defective keyboard or key interface.
Refer to di rect/general support maintenance.
12. CURSOR DI SAPPEARS.
Check for open panel.
Close panel.
13. DI SC STOPS SPI NN NG
Check for open panel.
Cl ose panel.
14. J AMED KEYBOARD.
Check for open panel.
Close panel.
15. RANDOM ADDRESSES APPEAR IN ACL FIELD.
Check to see if disc is dirty.
Clean di sc.

Table 2-3. TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
16. NO POVER TO MACH NE.

Step 1. Check that power switch is in ON position.
(a) If power switch is on, proceed to step 2.
(b) Turn power switch on.

Step 2. Vi sually check mai n poner fuse.
(a) Repl ace fuse if defective (paragraph 2-10. 1.).
(b) If problemis not corrected, refer to direct/general support nai nt enance.

2-10. MAINTENANCE PROCEDURES.
Thi s section contains instructions covering operator maintenance functions for the composing machi ne. Personnel are listed only if the task requires nore than one.
b. After compl eting each mai ntenance procedure, perform operational check to be sure that equi pment is properly functioning.

I NDEX
PROCEDURES
PARAGRAPH
Repl ace Mai n Power Fuse. .. 2-10. 1

2-10. 1 Repl ace Mai n Power Fuse.
MDS: 81C, Cartogr apher
SUPPLI ES: Fuse (8 amp, S1o-B1o)

WARNING

Death or serious injury may occur fromel ectrical shock unl ess power is secured bef ore servi ci ng.

a. Turn off circuit breaker.
b. Rai se top left panel.

c. Turn off power switch.
d. Renove defecti ve nai n power fuse.
e. Install new nai n power fuse.
f. Close top left panel.
g. Turn on circuit breaker.

Section IV ORGANIZATIONAL MAINTENANCE

2-11. LUBRICATION INSTRUCTIONS.

NOTE
These I ubrication instructions are mandatory.

2-11. 1 Lubricate Whyrods. Apply a thin coat of oil on wayrods with cheesecl oth noi stened with oil (Item 15, Appendix E) annually.

2-11.2 Lubricate Helix Screws. Lightly coat helix screws with versilube, (Item 30, Appendi x E) annual ly.

2-12. REPAIR PARTS, SPECIAL TOOLS; TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE); AND SUPPORT EQUIPMENT.

2-12.1 Common Tool s and Equi pnent. For authorized common tools and equi pment, refer to the Modified Table of Organization and Equi pnent (MOE) applicable to your unit.

2-12.2 Speci al Tool s: Test, Measurement, and Di agnostic Equi pment; and Support Equi pment. Speci al Tool s, TMDE, and Support Equi prent is listed in the applicable repair parts and special tools list and Appendix B of this manual.

2-12. 3 Repair Parts. Repair parts for this equipment are listed and illustrated in the Repair Parts and Special Tools List TM 5-6675-316-24P covering organi zational nai ntenance for this equi pnent.

2-13. SERVICE UPON RECEIPT.

2-13. 1 Checki ng Unpacked Equi pnent.

a. Inspect the equi pnent for danage incurred during shi pment. If the equi pnent has been damaged, report the damage on DD Form 6, Packing I mprovenent Report.
b. Check the equi pnent agai nst the packing list to see if the shi pnent is compl ete. Report al I discrepanci es in accordance with the instructions of DA Pam 738-750.
c. Check to see whet her the equi prent has been nodified.

2-14. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES.

PMCS are desi gned to keep the equi pment in good working condition by performing certain tests, inspections and services. The intervals provide you, the organi zati onal technician, with time schedules that determine when to perform specified tasks.
b. It tem number col umn. Item numbers are assi gned in chronol ogi cal ascendi ng sequence regardless of interval designation. These numbers are used for your "TM Number" col umm on DA Form 2404, Equi pnent Inspection and Mai ntenance Wbrksheet, in recording the results of PMCS.

I nterval col ums. This col um determines the tine period designated to perform your PMCS.
d. Item to be inspected and procedures col um. This col um lists functional groups and thei r respective assenblies and subassenblies as shown in the Mai ntenance Alocation Chart (Appendix B). The appropriate check or service procedure follous the specific item to be inspected.
e. List of tools and materials required for PMCS is as follows:

Item	Quantity
Vacuum Cl eaner	1 ea
Lens Brush	1 ea
Cheesecl oth (Item 6, Appendi x E)	ar
Fl ashl ight	1 ea

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES

1. Remove copy aid.
2. Open top left panel.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

3. Turn power switch OFF.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

4. Remove rear panel.

CAUTION

- To prevent damage to optical surfaces, do not wipe optical surfaces until dust and foreign matter have been removed.
- Do not touch optical surfaces with bare fingers.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

5. Use dry clean lens brush to dust off LED, scanning mirror, and lens.
6. Inspect wires and components for burn marks, arcs, and burnt components.
7. Replace rear panels.
8. Close top left panel.
9. Replace copy aid.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

3. Remove rear panels.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE
CHECKS AND SERVICES - Cont

4. Inspect between font guides for excessive film lint. If lint is not found, proceed to step 9.
5. Remove font guide mounting screws.
6. Use lens brush to remove lint from font guides.
7. Vacuum font guides to be sure all lint is removed.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

	Before During After	W - Weekly AN - Annually M - Monthly S - Semiannually O Quarterly BI - Biennially	(Number) - Hundreds of Hours
$\begin{aligned} & \text { ITEM } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { IN- } \\ & \text { TER } \\ & \text { VAL } \end{aligned}$	ITEM TO BE INSPECTED PROCEDURE	
2	AN	COMPOSING MACHINE - Cont Inspect Font Guides - Cont 8. Reinstall font guide mounting screws. 9. Replace rear panels. 10. Remove left side panel.	

11. Turn on power switch.

Table 2-4. ORGANIZATIONAL PREVENTIVE MAINTENANCE CHECKS AND SERVICES - Cont

2-15. ORGANIZATIONAL TROUBLESHOOTING PROCEDURES.

a. Organi zati onal troubl eshooting procedures cover the nost common mal functions that may be repai red at the organi zational level. Repai r or adjustment requiring specialized equipment is not authorized unl ess such equipment is available. Troubl eshooting procedures used by the operator should be conducted in addition to the organi zational troubl eshooting procedures.
b. This manual cannot list all the possible malfunctions or every possible test/ inspection and corrective action. If a nalfunction is not listed or is not corrected by a listed corrective action, notify your supervisor.
c. For uni dentified malfunctions, use the facing schematic or the fol dout located at the end of this manual for further fault anal ysis.

NOTE

Sufficient data is not available for you to test or troubl eshoot printed circuit boards. When associ ated wiring, ribbon cables, power cords and other rel ated el ectrical components have been el iminated as possible faults, then the printed circuit boards must be substituted, one for one, until the fault is isol ated.

Table 2-5, ORGANIZATIONAL TROUBLESHOOTING

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON

1. GENERAL DENSITY OF COPY IS LOW

Check high vol tage supply out put to flash Iamp.
If incorrect, repl ace flash power supply (paragraph 2-16.9).

Table 2-5. ORGANIZATIONAL TROUBLESHOOTING - Cont

MALFUNCTION
TEST OR INSPECTION
CORRECTIVE ACTION
2. FOCUS IS GENERALLY POOR.

Step 1. Check that variator and collimator home switches are properly adj usted and nake certai n that they are agai nst pin.
(a) If properly adjusted, proceed to step 2.
(b) Adj ust switches.

Step 2. Check if lenses are secure in their nounts.
Tighten lenses.

Table 2-5. ORGANIZATIONAL TROUBLESHOOTING - Cont

MALFUNCTION
TEST OR INSPECTION
CORRECTIVE ACTION
3. NO POWER.

Step 1. Check for presence of 120 V ac output from constant voltage transforner at TB1.
(a) If present, proceed to step 2.
(b) If not present, refer to di rect/general support mai ntenance.

Step 2. Check for presence of 120 V ac at input of line filter FL1.
(a) If present, proceed to step 4.
(b) If not present, proceed to step 3.

Step 3. Check fuse F1 for continuity.
(a) If conti nuity is present, proceed to step 4.
(b) If not, repl ace fuse (paragraph 2-20. 1).

Step 4. Check output of line filter FL1 for 120 V ac.
(a) If present, proceed to step 5.
(b) If not, replace Iine filter (paragraph 2-16.1).

Step 5. Check input of transforner T1 for 120 V ac.
(a) If present, repl ace transf or mer (paragraph 2-16.2).
(b) If not present, refer to di rect/general support nai ntenance.

4. NO VOLTAGES FROM PONER SUPPLY.

Step 1. Check transforner for continuity.
(a) If continuity exists, proceed to step 2.
(b) If def ecti ve, repl ace transf ormer (paragraph 2-16.2).

Table 2-5. ORGANIZATIONAL TROUBLESHOOTING - Cont

MALFUNCTION
TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
4. ND VOLTAGES FROM POVER SUPPLY - Cont

Step 2. Check dri ver power supply fuse for continuity.
(a) If continuity exists, proceed to step 3.
(b) If defective, repl ace fuse (paragraph 2-16.7).

WARNING

High vol tages that are capable of causi ng death may be stored in capacitor after power is renoved. Be sure capacitor is di scharged and reduced to zero volts.

Step 3. Check filter capacitors.
(a) If capacitor is defecti ve, repl ace (paragraph 2-16.4).
(b) Refer to di rect/general support mai ntenance.
5. NO DI SPLAY ON MDN TOR.

Check conti nuity of nonitor fuse f2.
Repl ace fuse (paragraph 2-16.6).
6. PROLONGED BEEP SOUND DO NOT STOP.

I nternal temperature too high, check operation of fans.
Repl ace fans (paragraph 2-16.3).

7. NO SOUN FROM LODDSPEAKER

Check Ioudspeaker for conti nuity.
Repl ace I oudspeaker (paragraph 2-16.5).

2-16. MAINTENANCE PROCEDURES.
Thi s section contains instructions covering organi zational nai ntenance functions for the composing machi ne. Personnel requi red are listed only if the task requi res more than one.
b. After compl eting each mai ntenance procedure, perform operational check to be sure equi pnent is properly functioning.

I NDEX

PROCEDURES PARAGRAPH
Repl ace Li ne Filter 2-16. 1
Repl ace Transf or ner 2-16. 2
Repl ace Fan(s) 2-16. 3
Repl ace Filter Capacitors 2-16. 4
Repl ace Loudspeaker 2-16. 5
Repl ace Input/ Mbnitor Unit Fuse 2-16. 6
Repl ace Dri ver Power Supply Fuses 2-16. 7
Repl ace Fl ash Tube and Tri gger Pac 2-16. 8
Repl ace Fl ash Power Suppl y PC Board 2-16. 9
Renove/ Inst al I Composing Machi ne 2-16. 10

2-16. 1 Repl ace Line Filter.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOS: Fl at Tip Screndriver
SUPPLIES: Li ne Filter

WARNING

Death or serious injury nay occur from el ectrical shock unl ess power is turned of f bef ore servicing.

a. Open top left panel.

b. Turn of f power switch.
c. Turn off circuit breaker.

d. Renove I eft side panel.

e. Tag and di sconnect line filter wi res.
f. Renove line filter nounting screws.
g. Renove defective line filter.
h. Install new line filter and secure with nounting screws.
i. Reconnectline filter wires.
j. Reinstall left si de panel.
k. C ose topl eft panel.
I. Turn on circuit breaker,
m Turn on power switch.

2-16. 2 Repl ace Transf ormer.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
PERSONEL: Four persons are required to performthis procedure.
TOOS: Flat Tip Screndri ver
3/ 16 in. Hex Head Key Wench
SUPPLI ES: Tr ansf or ner

WARNING
Death or serious injury may occur from el ectrical shock unl ess power is turned off bef ore servicing.

a. Rai se top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

WARNING
To avoid personal injury, four persons are required to nove the composing machi ne. Thi s equi pnent- wei ghs 485 I bs $(220 \mathrm{~kg})$.
d. Mbve composi ng machi ne away from wall (paragraph 2-16. 10).

REAR PANEL REMOVED
e. Renove left rear panel and left side panel.
f. Tag and di sconnect all transf orner wi res.

g. Renove nounting hardware and defecti ve transf ormer.

h. Instal I new transf or mer.
i. Secure with nounting hardware.
j. Reconnect transformer wires.
k. Install left side and left rear panels.

1. Move composing machi ne back to wall and rei nstall on mounts (paragraph 2-16. 10).
m Cose top left panel.
n. Turn on circuit breaker.
o. Turn on power switch.

2-16. 3 Replace Fan(s)_

MDS: 35E, Speci al El ectroni c Devi ces Repai rer
TOOS : Flat Tip Screudri ver
5/ 16 in. Combi nation Wench 5/ 16 in-, Socket $1 / 4 \mathrm{in}$. Drive 1/4 in. Ratchet
SUPPLI ES: Fan(s) Fan Power Cord

WARNI NG

Death or serious injury nay occur fromel ectrical shock unl ess power is turned of f before servicing.

a. Open top left panel .

b. Turnoff power switch.
c. Turn off circuit breaker.

LEFT SIDE PANEL
REMOVED
d. Remove left side panel.

Use steps e. through j, for repl acing microprocessor cooling fan; steps k. through p. for replacing power supply cooling fan.

MICROPROCESSOR COOLING FAN
e. Unpl ug microprocessor fan power cord.
f. Renove fan nounting nuts, washers, lockwashers, and bolts.
g. Renove fan assenbly.
h. Pl ace new f an guard on f an.
i. Mbunt fan assenbly and secure with bolts, washers, lockwashers, and nuts.
j. Plug in fan power cord.

NOTE
If power supply cooling fan is not to be replaced at this time, proceed to step q.
k. Unpl ug power supply cooling fan power cord.

I. Renove nounting nuts, washers, and lockwashers and defective fan assenbl y.
m Renove screvs, washers, lockwashers and fan guard from defective fan.
n. Install fan guard on new fan.
0. Rei nstall fan assenbly and secure with bolts, lockwashers, washers and nuts.
p. Plug in fan power cord.
q. Install left side panel.
r. Turn on circuit breaker.
s. Turn on power switch.
t. Close top left panel.

2-16. 4 Replace Filter Capacitor.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver
Fl at Tip Captive Screudri ver
SUPPLI ES: Filter Capacitor(s)

$$
\overline{\text { WARNING }}
$$

Death or serious injury may occur fromel ectrical shock unl ess poner is turned off before servi ci ng.

a. Open top left panel.

b. Turn off power switch.
c. Turn of f circuit breaker.

d. Lift lever and open front panel magazine door.
e. Renove one screw and center front panel.
f. Lift and renove lower front panel.

WARNING
High voltages that are capable of causing death may be stored in capacitor after power is renoved. Be sure capacitor is di scharged and reduced to zero volts.
NOTE

Tag all capacitor wires. Do not lose any components.
g. Tag and renove wi res from capacitor(s).
h. Renove nounting screvs and renove defective capacitor(s) with nounting bracket.
i. Renove defective capacitor(s) from nounting bracket and install new capacitor(s) on nounting bracket.
j. Install new capacitor(s) and nounting bracket.
k. Tighten nounting screus.

1. Connect wi res to new capacitor(s).
m Reinstall lower front panel.
n. Reinstall center front panel and secure with screw
2. Close front panel magazi ne door.
P. Turn on circuit breaker.
q. Turn on power switch.
r. Close left top panel.

2-16. 5 Repl ace Loudspeaker.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screwdri ver
SUPPLI ES: Loudspeaker

WARN NG
Death or serious injury may occur from el ectrical shock unl ess power is turned off before servicing.

a. Open top left panel.
b. Turn off power switch.
c. Turn off circuit breaker.
d. Lift lever and open front panel nagazine door.
e. Renove screw and top center panel.
f. Lift and renove lower front panel.

g. Renove left si de panel.

h. Tag and disconnect loudspeaker wires.
i. Move to left side of composing machine.

j. Di sconnect Ioudspeaker fromits nounting base by sliding toward left of machi ne.
k. Pull loudspeaker wires clear of driver supply board.

1. InstalI new Ioudspeaker.
m Push wires through opening at left edge of dri ver supply board.
n. Reconnect loudspeaker wi res to dri ver supply board.
2. Reinstall lower front panel.
P. Reinstall left side panel.
q. Reinstall top center panel and secure with screw
r. Close front panel magazi ne door.
s. Turn on circuit breaker.
t. Turn on power switch.
u. Close top left panel.

2-16. 6 Repl ace I nput/ Monitor Unit Fuse.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: FI at Ti p Screndri ver Fuse Puller

SUPPLI ES: Fuse (1 amp, Sl o- Bl o)

WARN NG

Death or serious injury may occur fromelectrical shock unl ess power is turned of f before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

INPUT/MONITOR UNIT
d. Renove tuo screvs from rear of input/ noni tor cover.
e. Lift cover clear of base of input/monitor unit.

f. Renove def ecti ve fuse from fuse hol der.
g. I nstall new fuse in fuse hol der.
h. Rei nstall cover on base of input/nonitor unit.
i. Turn on circuit breaker.
j. Turn on power switch.
k. Close top left panel.

2-16.7 Repl ace Dri ver Power Supply Fuses.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: FI at Ti p Scr eudri ver
Fuse Puller
SUPPLI ES: Fuse (6 anp SI o- Bl 0
Fuse (10 amp)
$\overline{\text { WARNING }}$
Death or serious injury nay occur from el ectrical shock unl ess power is turned of f bef ore servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn of f circuit breaker.

d. Lift lever.
e. Open front panel magazine door.
f. Renove screw and top center panel.
g. Renove I ower front panel.

h. Renove def ecti ve fuse F1 (10 amp).
i. I nstall new fuse F1.
j. Renove defective fuse F2 (6 amp).
k. Install new fuse $\mathbf{F 2}$.

1. Rei nstall lower front panel.
m Reinstall top center panel and secure with screw
n. Close front panel magazi ne door.

0 . Turn on circuit breaker.
p. Turn on power switch.
q. Cose top left panel.

2-16. 8 Repl ace Fl ash Tube and Tri gger Pac.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Flat Tip Screudri ver $2 \times 1 / 8$ in.
1/4in. Open End Wench
$1 / 4$ in., Socket $1 / 4$ in. Drive
$1 / 4$ in. Drive Ratchet
SUPPLI ES: FI ash Tube
Tri gger Pac

WARNING

Death or serious injury may occur fromel ectrical shock unl ess power is turned off before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

d. Renove left si de panel.

WARNING
High voltages that are capable of causing death nay be stored in capacitor after power is renoved. Be sure capacitor is di scharged and reduced to zero volts.
e. Di sconnect pl ugs (P118, P20 and P21).
f. Renove flat head screw at rear of flash power supply base.
g. Loosen tho snall bolts at forward side of power supply base.
h. Carefully slide character storage unit toward rear of nachi ne while lifting gently on flash power supply.
i. Renove flash power supply from character storage unit.
j. Renove four screws and cover from flash power supply.

k. Renove two screws from outsi de forward housing of flash power supply. Unpl ug and renove defective flash tube and trigger pat.
I. Install new flash tube and trigger pat.
m Rei nstall cover on flash power supply.
n. Reattach flash power supply to character storage unit.
0. Reconnect pl ugs.
p. Rei nstall left side panel.
q. Turn on circuit breaker.
r. Turn on power switch.
s. Close top left panel.

2-16. 9 Repair Flash Power Supply Assembly,

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver
1/4in. Open End Wench
$1 / 4$ in. Drive, Socket Set
SUPPLI ES: FI ash Power Supply PC Board Fl ash Tube
Trigger Pac

WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is turned off before servicing.

NOTE

Thi s procedure is in a di sassenbl y - assenbly sequence. Di sassenble the flash power supply only as far as necessary.

a. Open top left panel.

b. Turn of f power switch.
c. Turn off circuit breaker.

d. Renove left si de panel.

WARN NG
High vol tage capable of causing death may be stored in capacitor after power is renoved. Be sure that capacitor is discharged and reduced to zero volts.

e. Tag and di sconnect three pl ugs (P20, P21 and P118).
f. Renove screw at rear of assenbly and loosen two nounting screws at front of assenbl y.
g. Carefully slide character storage unit toward rear and renove from nachi ne.
h. Renove flash power supply from character storage unit.
i. Loosen tuo screus and renove cover from assenbly.

j. Note position and di sconnect trigger pac plug.
k. Renove two screvs and renove trigger pac and flash tube as a unit.
I. Pull flash tube straight out from trigger pac and place nounting bracket asi de.
m Pull P20 and P21 gromets from housi ng.
n. Tag and di sconnect P118 wi res at board terminals.
0. Renove nounting screvs and PC board.
p. Inspect and replace defective parts.
q. Reconnect wires.
r. Rei nstall flash tube and trigger pat.
5. Rei nstall cover and flash power supply.
t. Reconnect pl ugs.
u. Rei nstall rear si de panel.
v. Turn on circuit breaker.
w Turn on power switch.
x. Cose top left panel.

2-16.10 Renove/لnstalلComposing_Machine.

MDS : 35E, Speci al El ect ronic Devi ces Repai rer
PERSONEL: Four persons are required to perform this task.
TOOLS: Flat Tip Screudri ver
$7 / 16$ in. Conbi nati on Wench
3/4 in. Conbi nati on Wench
SUPPLI ES: Composing Machine

WARN NG

Death or seri ous injury may occur fromel ectrical shock unl ess power is turned off before servicing.

a. Rai se top left panel.
b. Turn off power switch.
c. Turn of f circuit breaker.
d. Close top left cover.
e. Renove bol ts, washers, and di splay screen.
f. Renove bolts, washers, shelf, and bracket.
g. Renove left panel.

h. Tag and di sconnect power cable leads.
i. Renove conduit locknut. Renove cable from composing nachi ne and rei nstall left panel.
j . Renove shock nount center bolts.

WARNING

To prevent personnel injury, four persons are needed to nove this equi pnent. Composi ing machi ne wei ghs 485 l bs (220 kg).
k. Lift composing machine from shock nounts and nove to center of van.
I. Renove defective conposing nachine fromsection with materials handling equi pnent.
m Position new composing machine over shock nounts and secure with shock nount center bolts.
n. Renove left panel.
o. Reinstall cable assenbly. Reinstall and tighten conduit locknut.
p. Reconnect cable leads. Turn on power switch.
q. Reinstall top left panel.
r. Rei nstall di splay screen and secure with washers and bolts.
s. Turn on circuit breaker.

2-17. PREPARATION FOR STORAGE OR SHIPMENT. Contact your battalion for packing and shipping instructions.

Section V DIRECT/GENERAL SUPPORT MAINTENANCE

2-18. REPAIR PARTS, SPECIAL TOOLS; TEST, MEASUREMENT, AND DIAGNOSTIC EQUIPMENT (TMDE); AND SUPPORT EQUIPMENT.

2-18. 1 Comon Tool s and Equi pment. For authorized common tools and equi pnent, refer to the Modified Table of Organization and Equi pnent (MOE) applicable to your unit.

2-18.2 Speci al Tool s; Test, Measurenent, and Diagnostic Equipnent; and Support Equi pment. Special Tools, TMD and Support Equi pnent requi red for the repair of this equip pent are found in the repair parts and special tools list and Appendix B of this manual.

2-18. 3 Repair Parts. Repair parts for this equipnent are listed and illustrated in the Repair Parts and Special Tools List, TM 5-6675-316-24P covering direct/general support maintenance for this equil pnent.

2-19. DIRECT/GENERAL SUPPORT TROUBLESHOOTING PROCEDURES.

a. Direct/general support troubl eshooting procedures cover the nost common mal functions that nay be repai red at the di rect/general support level. Repair or adj ust nent requiring specialized equi pnent is not aut horized unl ess such equipment is available. Troubl eshooting procedures used at lower levels should be conducted in addition to the direct/general support troubleshooting procedures.
b. This manual cannot list all the possible mal functions or every possible test/inspection or corrective action. If a malfunction is not listed or is not corrected by a listed corrective action, notify your supervisor.

NOTE

Sufficient data is not available for youto test or troubl eshoot printed circuit boards. When associated wi ring, ri bbon cables, power cords, and other rel ated el ectrical components havebeen eliminated as possible faults, then the printed circuit boards must be substituted, one for one, until the fault is isol ated.

Table 2-6. DIRECT/GENERAL SUPPORT TROUBLESHOOTING

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON

1. GENERAL DENSITY OF COPY IS LOW

Step 1. Check flash power supply intensity reference voltage.
(a) If properly adj usted, proceed to step 2.
(b) If out of tol erance, adj ust vol tage (paragraph 2-20.23).

Step 2. Check I arge si ze adj ustment.
Perform flash intensity I arge size adj ustment (paragraph 2-20.23).
2. DENSI TY DI STRI BUII ON ACROSS CHARACTERS IS POOR.

Check Iens tube alinenent.
Aline Iens tube (paragraph 2-20.24).

Table 2-6. DIRECT/GENERAL SUPPORT TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON

CORRECTI VE ACTI ON
3. CHARACTER DENSI TY VARI ES WTH POINT SIZE.

Check flash intensity reference and Iarge size adjustment.
Adj ust flash intensity and large size (paragraph 2-20.23).
4. FOCUS IS GENERALLY POOR.

Step 1. Check flash intensity reference and large size adj ustment.
(a) If adj ustment is correct, proceed to step 2.
(b) If not correct, performflash intensity and Iarge size adj ust nent (paragraph 2-20.23).

Step 2. Check optical focus switches on carriage escapement board agai nst punch chart inside top left panel.
(a) If switch settings are correct, proceed to step 3.
(b) If not correct, correct switch settings.

Step 3. Check flash power supply reference and large size adj ustments.
Adjust flash power supply reference and I arge si ze (paragraph 2-20.23).
5. NO PONER.

Step 1. Check output of constant vol tage transformer.
(a) If present, repai r wi ring bet ween TB2 and constant voltage transf orner.
(b) If not present, proceed to step 2.

Step 2. Check input of constant voltage transformer.
(a) If not present, proceed to step 3.
(b) If present, repl ace constant vol tage transformer (paragraph 2-20.21).

Tabl e 2-6. DIRECT/GENERAL SUPPORT TROUBLESHOOTING - Cont

MALFUNCTI ON

TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
5. NO PONER - Cont

Step 3. Check output voltage of circuit breaker in power panel.
(a) If present, repai r wi ring bet ween circuit breaker and transf or mer.
(b) If not present, repl ace circuit breaker (paragraph 1-20.5).
6. VARI OUS VOLTAGES FROM PONER SUPPLY I NCORRECT. ALL OIFER VOLTAGES ARE CORRECT.

Step 1. Check for output on pins 6, 7, and 8 of transformer T1.
(a) If present, proceed to step 2.
(b) If not present, repl ace transf orner (paragraph 2-16.2).

Step 2. Check 18 V dc output.
(a) If present, proceed to step 3.
(b) If not present, repl ace CR1 (paragraph 2-20.6).

Step 3. Check wi res from secondary of transformer to rectifier for continuity.
(a) If correct, proceed to step 4.
(b) If conti nuity does not exi st, repai r wi ring.

Step 4. Check ground lead from CR1 to J 110 for conti nuity.
(a) If continuity exists, proceed to step 5.
(b) If continuity does not exist, repai l lead.

Step 5. Check for 26 V dc at output of CR4.
(a) If present, proceed to step 6.
(b) If not present, repl ace CR4.

Table 2-6. DI RECT/ GENERAL SUPPORT TROBLESHOOII NG - Cont

MALFUNCTI ON
TEST OR I NSPECTI ON
CORRECTI VE ACTI ON
6. VARI OUS VOLTAGES FROM PONER SUPPLY I NCORRECT. ALL OTHER VOLTAGES ARE CORRECT - Cent

WARNING

High voltage capable of causi ng death may be stored in capacitor after power is renoved. Be sure capacitor is di scharged and reduced to zero volts.

Step 6. Check 9 V dc output at capacitor C1.
If not present, replace capacitor C1.
7. UNMANTED CHARACTERS ARE APPEARI NG ON DI SPLAY AND RANDOM COMMNDS ARE BEI NG EXECUTED.

Check constant voltage transformer for continuity.
Repl ace transf or mer (paragraph 2-20.21).

NOTE
Adj ust power suppl y vol tages (paragraph 2-20.22) and perform di agnosti c test (paragraph 2-20.1).
8. I NPUT DI SPLAY IS FUZZY AND SLI GTLIY OT OF FOCUS.

Check adj ust nent of di spl ay unit.
Adj ust di spl ay unit (paragraph 2-20.27).

2-20. MAINTENANCE PROCEDURES.

Thi s section contains instructions covering direct/general support mai ntenance functions for the composing machine. Personnel required are listed only if the task requi res nore than one.
b. After compl eting each nai ntenance procedure, performoperational check to be sure equi pment is properly functioning.

I NDEX

PROCEDURESPerform Di agnostic Test2-20.1
Repl ace Carri age Escapenent Board, LVC Board, Font I nterface III Board, D/ A and Stepper II Board, Keyboardand Interf ace III Board, and Character Generator S/ A2 Board 2-20.2
Repl ace 8K X 8 RAM Board , 32K ROM PROM Board, CPU Data Board, and CPU Control Board. 2-20. 3
Repl ace Disc Track LED and Cable Assembly. 2-20.4
Repl ace Dri ver Supply Board 2-20.5
Repl ace Bridge Rectifier 2-20.6
Repl ace Power Supply. 2-20.7
Repl ace Stepping Mbtor 2-20. 8
Repl ace Shutter Assembly 2-20.9
Repl ace Carri age Cables 2-20.10
Repl ace Carriage Mbtor 2-20.11
Repl ace InterlockSwitch 2-20.12
Repl ace Row Shift Motor 2-20. 13
Adjust Setting onCompatibility Switches 2-20. 14
Repl ace Brightness Control 2-20. 15
Repl aceFi I m Out Switch. 2-20. 16
Repl ace Mbvable Kni fe 2-20. 17
Repl aceFont Pi ckup PC Board 2-20. 18
Repl aceVari ator/Collimator Mbtor(s) 2-20. 19

I NDEX - Cont
PROCEDURES PARAGRAPH
Repl ace Li mit Switch (es) .2-20. 20
Repl ace Constant Vol tage Transforner 2-20. 21
Adj ust Power Suppl y Vol tages . 2-20. 22
Adj ust Fl ash Intensity and Large Si ze 2-20. 23
Adj ust Fl ash Tube Vertical and Horizontal 2-20.24
Aline Left Margin . 2-20.25
Focus and Aline LED .2-20. 26
Adj ust I nput/ Moni tor Uni t Displ ay. 2-20.27
Adj ust Basel ine . 2-20. 28
A i ne Margi n Bet ween Poi nt Si zes . 2-20. 29

2-20.1 Conduct Diagnostic Test.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
SUPPLI ES: Test Disc
Sel f-Di agnostic Board Photographi c Paper US/ Metric Rule (12 in.)

WARN NG
Death or serious injury may occur from el ectrical shock unl ess poner is turned off before servicing.

a. Open top left panel.
b. Renove center panel.

c. Turn off power switch.
d. Turn off circuit breaker.

e. Pl ace di sc box conta ning test disc in conveni ent locaton.
f. Open di sc box.

g. Grasp knurled knob and renove disc from di sc box.

Do not touch disc with hands. Skin oils contaminate disc rendering it usel ess.
h. Grasp plastic handle.
i. Place left edge of disc into slot.
j. While hol ding plastic handle, tighten knurled knob.
k. Use plastic handle to spin disc. It should rotate easily.

1. Set copy intensity dial to 2.

m Note footage indicator. If it reads less than 145 proceed to step w
n. Renove take-up cassette.
o. Lower front panel.
p. Renove and di scard paper cassette.
q. Cut paper edge on new cassette 2 to 3 in.

r. I nsert cassette into composi ng machi ne.

NOTE
Be sure that knobs of cassette fit into slots and that paper/filmis behind first roller.
s. Push cover down until it clicks.
t. Rotate thumb di al upward 5 to 6 times.
u. Pull up locking latch.
v. Turn paper feed knob up. If thumb di al starts to turn, paper is loaded correctly.
w Cose front panel.

x. Renove 32K ROM PROM board.

SWITCH\#1

SWITCH\# 2

SWITCH \# 3

8	7	6	5	4	3	2	1
						CPU PROM MAIN PGM NOT PRESENT	PROM ON CPU
OFF	OFF	OFF	OFF	OFF	OFF	YES-ON NO-OFF	YES-ON NO-OFF

SWITCH \# 4

8	7	6	5	4	3	2	1
		TURRETT	FLOPPY	PUNCH READER	MAX. POINT SIZE 74 POINT	MODEL COMP/SET	
OFF	OFF	OFF	OFF	OFF	OFF	ON	ON

Y. Set switches on self-di agnostic board as shown.
z. Install self-diagnostic board into any card cage slot.
aa. Rei nstall center panel.

ab. Turn on circuit breaker.
ac. Turn on power switch.
ad. Close top left panel.

NOTE

Tables 2-7 and 2-8 contain keyboarding inf ornation and test description required for performing diagnostic test.

Table 2-7. DIAGNOSTIC EXECUTION REQUIREMENTS

Key	Descri ption
SHIFT / \square	Return to supervi sor if in pause, or go to pause. Del ete entry if in supervi sor routi ne.
SPACE BAR	Allons 8 lines on screen to be filled with single character, only with character generat or di agnostic.
SH FT/ \square	Conti nue test.
SH FT /	Answer of "NO" to question.
SH FT $/ \square$	Answer of "YES" to question
\longrightarrow	Response to ${ }^{\text {a }}$
\square	Response to \square

NOTE

- After inserting the di agnostic ROM board, the di agnostic program nay be executed by hol di ng ei ther cursor key down and then pressi ng the RESET key nonentarily. At the sound of the beeper, the cursor key is rel eased.
- When RESET is pressed, a series of tests autonatically starts, and "SH FT/ \square if desired, will appear after the compl etion of the hardware register test. If SHFT/ is pressed, control goes di rectly to the supervi sor, ot herwi se a 90% functional nachi ne checkout will be perforned bef ore obtaining supervisor control. A double right arrow foll owed by a blinker will be displayed on the CRT, i.e., $\Rightarrow \square$ indicating the program is under supervisor control.
- It is recomended that SHFT/ not be pressed when checking the nachi ne for the first time.
- Supervisor Control: Al commands are allowed via the keyboard or test panel. Data and/ or instructions not understood by the supervi sor will be answered with question marks "???". After two seconds, control reverts back to the supervisor.

Table 2-8. TEST DESCRIPTION
Test Description

ROM Di agnostic Checksum Test:

Speaker Test:

Screen Swap and Erase Test

Performed aut onati cally -- Upon pressing RESET. Perforns a sequential summation of all data within the ROM nenory and compares the total agai nst a known checksum val ue. An error causes ERROR 98 to appear on the upper left portion of the CRT.

Nb indi cation is gi ven if the test passes successfully.

Thi s is an audi ble test of the speaker. The speaker sounds for two seconds. An error is indicated by the absence of an audi ble tone.

A screen suap or erase error is i ndi cated by a continuous audi ble tone of tho seconds on followed by $1 / 4$ second off. An error indi cates a problemin ei ther the keyboard interface or character generator board.

Test	Description
Keyboard Buffer Swap Test	A keyboard buffer suap error is i ndi cated by a conti nuous audi ble tone of two seconds on followed by two seconds off. An error indicates a problemin the keyboard interface board.
CPU PROM Checksum Test	Perforns a sequential summation of all data within locations 0000 to OOFF. I ncl udes I ocati ons 0005 and 0006 whi ch contain the known checksum val ue. A comparison of the cal culated total is then made agai nst the known val ue. An error causes ERROR 97 to appear in the upper left portion of the screen.
CPU PROM Checksum Test - Cont	Nb indication is gi ven if the test successfully passes. In the event there is no CPU PROM the test checks the same locations in ROM which become an overlay of locations 0000 to 00FF. ERROR 98 appears if an error occurs.
Hardvare Regi ster Di agnostics	Verifies all working parts on the CPU board by performing an extensi ve pattern and sequence test. An error causes the buzzer to sound conti nuousl y. Two short bursts on followed by two seconds of f. The error indi cation can be terminated onl y by pressing the keyboard RESET. An error indi cates a problemin the CPU DATA or CPU CONTRD boards.
CPU PROM Checksum Test - Cont	No indication is gi ven if the test successfully passes.
	Upon successful compl etion of hardware regi ster di agnostics, the following nessage will be di splayed on the screen. is desired.
	If SHIFT/ \square is entered from the keyboard, the di agnostic program will go to the supervi sor node and di spl ay on the screen, waiting test request entry from the keyboard.

Table 2-8. TEST DESCRIPTION - Cont

Test Description

NOTE

If SHIFT/ is not entered, the following test.s are performed automatically: $1,2,3,6,7,9,10,13,15,17,18$, and 25

Display Memory Di agnostics

Test 1: Functional Test

Test 2: Functional Test

Test 3: Stepping Accuracy Test

Test 4:

Verifies the IK di spl ay memory by performing a dynamic test pattern (updown) and extended sequence test. The test in progress is visibe on the screen.

An error is indi cated by a conti nuous buzzer tone. An error indi cates a problemin the character generator board.

Successful compl etion of the test returns program control to the supervi sor routine, at which ti me $\rightarrow \square$ will be di splayed on the screen. I ndi vidual test can then be requested by appropriate test number.

Carriage Diagnostics

Upon initi ating this test, primary nessage request that carri age be physically placed off its limits.

Thi s test accuracy and repeatability of carriage stepping assenbly and hone position (left limit) switch. If error occurs in functional or accuracy tests, program will aut onatically run tests 4 and 5 , which will continue to cycle carriage back and forth until, SHIFT/ \square is entered from keyboard, returni ng program control to supervi sor routine.

Cycl es carriage 1500 steps (2 times) for ward and reverse. Allow test to run for at least one minute.

Table 2-8. TEST DESCRIPTION - Cont

Table 2-8. TEST DESCRIPTION - Cont

ROW Shift Diagnostic - Cont

The mechani sm may be stopped at any position by messi ng SHIFT/ \square. Thi s buts you in pause condition. SHIFT/ \square conti nues ROW shift cycling. Pressing SHIFT/ \leftrightarrows when in pause causes control to return to supervi sor routi ne.

Disc and Detector Di agnostic

POS	RQ	I S	POS	RQ	I S	
016	QB	OD	---	--	--	
034	32	34	--	--	-	(Repeat bl ank entri es 5 nore
035	33	38	--	--	-	ti mes)
053	14	00	--	--	-	

Test 17: Functional Test

Test 17: Functional Test - Cont

Upon sel ecting this test, flashing will begin if no errors are detected, accompani ed by $\mathrm{Q}^{\text {to }}$ conti nue nessage. I ndi cated response will cause "Character Ready" or the ability to obtain width data for each of 112 characters in all four rows. Third part of this test reads and sense width code errors.

Pauses on each ROW to conti nue test press SHIFT/ \longrightarrow.

Errors are indi cated on screen as follows: Disc position (POS) is in deci mal, RQ - Requi red Hex and IS Hex for up to seven rows.

Test 18: Di sc Speed Test
This test initially determines whether a di sc is present, checks widths for parity and determines whether disc is four or six-row Disc notor is then turned of f and checked for zero speed (\#OF).

Table 2-8. TEST DESCRIPTION - Cont

Test		Descri ption
Disc and Detector Diagnostic - Cont		
Test 18:	Di sc Speed Test - Cont	Next test phase exam nes disc at each speed (0.9 , Four-row O.B, si x-row) to determine that speed has increased from previ ous speed and at approxi matel y 1400 $\mathrm{R} / \mathrm{m} \mathrm{n}$, speed is accurate within 1 percent. Numbers are rel ative speed i ndi cation. Motor overspeed- \#OE.
Disc Vidth Dump		
Test 19:	Functional Test	This test si multaneously dumps all 112 deci nal codes from any di sc in actual typesetter width. Parity errors (if any) are indi cated by blinking cursors adj acent to width val ue. Hal \mathbf{f}-units (when avai lable) are di spl ayed after integer width val ue.

Kevboard Diagnostic

Test 20: Functional Test

Upon initiating this test, "ENTER 7 KEYS WTHN 8 SECONDS" is requested on the screen. Seven identical al phanumeric characters should be entered within time allotted. This phase of test is executed two times.

Next part of test enables check out of key switch codes for 78 key keyboards. Primary message indi cates key number to be pressed. As appropriate keys are pressed, audi ble si gnal indicates the key entered was sensed correctly. Buzzer is not sounded. Errors are di splayed on the screen in the following format.

KEY NO.	REQ	IS	6 COLUMS
005	2D	2A	7 RONS

The following keys are i nacti ve: 66, 67, 69, 71, 72, 73, and 74. If pressed, they will result in errors.

Table 2-8. TEST DESCRIPTION - Cont
Test Description

Keyboard Di agnostic - Cont

Test 20: Functional Test - Cent If key is not sensed, or if no key is entered within $5 \mathbf{s e c}$, KEY XXX ENIERED ND [Y YES R message is displayed. NO triggers RE-ENTER KEY NO. XXX message.

Enter appropriate key to continue wh testing. YES \longrightarrow entered in response causes error nessage to be di spl ayed. Test will continue autonatically and is repeated for shift node. When keyboard has been compl etel y tested, PAUSE message will be di spl ayed. For the purpose of this test, the two SH FT keys, SH FT LOCK and RESET are unnumbered.

Key Code Dump Diagnostic

Test 21: Key Code Dump Test

This test allows visual verification of any desi red key code.

When first key is depressed, "CODE" message will appear accompani ed by hex code correspondi ng to that key. Di spl ayed code can then be checked agai nst key code table to determine any errors.

Character Generator Di agnostic

Test 22: Functional Test

Test 25: Menory Test

Thi s test provi des the techni ci an with neans to make subjective vi sual judgnents as to di spl ay perf or nance character generator functions.

Test sequences, through entire character program fill lower 8 lines of screen with si ngle character in ascendi ng coded order. I mages appear for approxi matel y 2 see, provi di ng time to vi sually screen errors.

Verifies all RAM by performing dynamic pattern test (up-down) and sequence test to extent as set on diagnostic status swi tches S1 and S2.

Table 2-8. TEST DESCRI PTI ON - Cont
Test Description

COpy Quality Diagnostics

Test 26: Copy Quality

Test 27: Horizontal Spaci ng, Tip and Basel ine

Test 28: Interfont Focus, Exposure, and Baseline

Test 29: Intersize Horizontal and Vertical Ruling.

This test autonatically perforns tests 26 through 29 i ncl usi ve.

Eval uates escapenent carriage and scanni ng mirror. Conti nuous horizontal I ine of connected dashes indi cates stepping accuracy of escapement carriage. Setting of scanning mirror is anal yzed by group of three interlocking i nages.

This test eval uates interfont focus, exposure and baseline. Copy produced is character " M ' from fonts 1 and 4 m xed on same line. Each line is different size starting at 5.5 points through 74 points.

Eval uates margin and baseline alinement bet ween sizes. Bottom edge of 5.5 point character and bottom edge largest character (dash) should al ine. Li kew se, left edge of 5.5 point character and left edge of largest character (vertical rule) should aline.
ae. Run aut onatic sequence di agnostic.
(1) Press cursor Ieft.
(2) Monentarily press reset.
(3) Al low autonatic test sequence to run and observe test results.
(a) Test pass screen indi cation $\Rightarrow \square$.
(b) Test failure will be indi cated by a test code \#XXX. Check this number with failure code in table in specific test.
af. Run diagnostic test in supervi sor node.
(1) Press cursor Ieft.
(2) Momentarily press reset.
(3) When "SH FT \Longleftarrow if desi red" is di splayed on screen, qui ckly press SHFT and cursor left.
(4) Sel ect desi red test by pressing test number and RET.
ag. Test Di spl ay Menory.
(1) Select test 1 (step af).

NOTE

An error indicates a problem in the character generator board.
(a) \rightarrow i indi cates test pass and return to supervi sor control.
(b) A conti nuous buzzer indi cates an ERROR.
ah. Test carriage di agnostics.
(1) Sel ect test 2 (step af).

(2) Manual ly nove carriage clear of init switches when di rected by
(a) Rai se top left panel.
(b) Renove center panel.

(c) Slide carriage clear of limit switches.
(d) Install center panel.
(e) Lower top Ieft panel.

NOTE

- If errors occur in functional or accuracy tests, program will autonatically run tests 4 and 5 , which will conti nue to cycle carriage back and forth until SHFT/ cursor left is entered from keyboard ret urni ng program control to supervisor routine.
- Test 4: Cycl es carriage 1500 steps (2 tines) forward and reverse. Al ow to run for at least one minute.
- Test 5: Cycl es carriage 20 steps (150 times) forward and reverse. Al low test to run for at least one minute.
(3) Press SH FT/ cursor right to conti nue test.
(4) Check di spl ay for errors (Table 2-9).
(5) Sel ect test three (step af).
(6) Al ow test to run for two minutes.
(7) Check di spl ay for errors (Table 2-9).

Table 2-9. CARRIAGE TEST DIAGNOSTIC ERROR CODES

Code	Error
010	Carri age Ready Error
011	Left and Right Li mit Switches Shorted
012	Right Li mit Switch Shorted
013	Direction Error
014	Right Limit Switch Open
015	Carriage Mbved in Wong Di rection
016	No Carri age Mbtion and/ or Ri ght and Left Li mit
017	Switches Shorted
018	Left Limit Switch Open
019	Carriage Accuracy Error
	Left Li mit Switch Shorted

NOTE
Iftests four and five were conducted or errors were di spl ayed that stopped a test in progress, all further tests must be keyboarded.
ai. Test variator di agnostics.

NOTE
If there are errors in tests si x or seven, test ei ght should be performed to aid in troubl eshooting.
(1) Sel ect test six (step af).
(2) Check di spl ay for errors (Table 2-10).
(3) Sel ect test seven (step af).
(4) Check di spl ay for errors (Table 2-10).
(5) If requi red, sel ect test ei ght (step af).

Table 2-10. VARI ATOR TEST DI AGNOSTI C ERROR CODES
Code Error

020
021

022

023
024

Forward di rect ion error
Hone switch shorted and/ or variator notion error

Hone switch open and/ or variator notion error

Variator ready error
Variator accuracy error
aj. Test collinator di agnostics.

NOTE

If errors are present in tests ni ne or ten, performtest 11 as an aid in troubl eshooting. If none present, proceed to test 13.
(1) Sel ect test ni ne (step af).
(2) Check di spl ay for errors (Table 2-11).
(3) Sel ect test ten (step af).
(4) Check di spl ay for errors (Table 2-11).
(5) If requi red, sel ect test 11 (step af).

Table 2-11. COLLIMATOR TEST DIAGNOSTIC ERROR CODES
Code
Error

027
028
029
030
031

Forward di rection error
Hone switch shorted and/ or notion error
Hone switch open and/ or notion error
Collimator ready error
Collimator accuracy error

```
ak. Test lens constant.
```

NOTE
Upon initiating this test, screen will di splay LENS CONSTANT TEST in function field, and data, such as shown in example in data field.

Example: In this example switch D6 has position 6 OFF and switch D5 has positions 8 and 4 OFF

SW D6
ON 8754321
OFF 6

SW D5
765321
84
(1) Sel ect test 12 (step af).
(2) Check data on screen agai nst data on punch chart.
(a) If data agrees, return to supervi sor routine.
(b) If error exists, performsteps (3) through (14).

(3) Rai se top left panel .

WARNING

Death or seri ous injury nay occur fromel ectrical shock unl ess power is turned off before servicing.
(4) Turn off power switch.
(5) Turn off circuit breaker.
(6) Renove center panel.

(7) Renove carriage escapenent board.
(8) Pl ace switches D5 and D6 in positions shown on punch data card.
(9) Rei nstal l carriage escapenent board.
(10) Rei nstal I center panel.
(11) Turn on circuit breaker.
(12) Turn on power switch.
(13) Cl ose top left panel .
(14) Press SH FT/ cursor right. Switches will be reread autonatically. al. Leading di agnostic test.
(1) Check that paper nagazi ne door is cl osed.
(2) Sel ect test 13 (step af).
(3) When ENSURE NO PAPER is di spl ayed, open paper magazi ne door.
(4) Press SH FT/ cursor right to conti nue test.
(5) When LOAD PAPER is di spl ayed, cl ose paper magazi ne door.
(6) Press SH FT/ cursor right to conti nue test.
(7) When CUT PAPER is di spl ayed, cut paper.
(8) Press SH FT/ cursor right.
(9) When CUT PAPER is di spl ayed, cut paper.
(10) Measure I ength of paper. It should measure 10 inches (25.4 cm).

Table 2-12. LEADING TEST DIAGNOSTIC ERROR CODES
Code Error

Paper out switch shorted
Paper out switch open
Leading ready error
am Test 14 is not applicable.
an. Perform ROW shift di agnostic.

NOTE

- Timing errors are di spl ayed on screen in the following format:

04X ROW ready error
X ROW number in error
049 ROW never ready

- The mechani sm nay be stopped at any position by pressing SH FT/ cursor left. This puts you in pause condition. SH FT/cursor right continues ROW shift cycling. Pressing SH FT/cursor left when in pause causes control to revert to supervi sor routine.
(1) Sel ect test 15 (step af).
(2) Check di spl ay for errors.
ao. Test 16 is not applicable.
ap. Perform di sc and detector di agnostic test.

NOTE

- Upon sel ecting this test, flashing will begin if no errors are detected, accompani ed by to continue message.
- Errors are indi cated on screen as foll ous: Disc position (POS) is in deci mal, RQ - requi red hex and IS hex for up to seven rows.

POS RQ IS POS RQ IS
016 OB OD
0343234 -- -- -- (Repeat up to seven rous)
$035 \quad 33 \quad 38$
0531400
(1) Sel ect test 17 (step af).
(2) Check di spl ay for errors.
(3) If errors are found, press SHFT/cursor right to continue test.

Disc and Detector Di agnostic Error Code
050 Character Ready Error
aq. Perform di sc speed test.

NOTE
After testing allusable speeds, notor is requi red to overspeed and check for turn- off. Successful test completion is followed by return to supervi sor routine.
(1) Sel ect test 18 (step af).
(2) Check di spl ay for errors.

Table 2-13. DISC SPEED DIAGNOSTIC ERROR CODES

Code	Error
103	Disc not at zero speed
104	Disc not turni ng
105	Disc read parity error
106	Disc not stable
107	Disc speed lower than previ ous speed
108	Disc not at correct speed
109	Disc did not stop on overspeed
110	Disc speed did not change

ar. Perform di sc width dump test.
(1) Sel ect test 19 (step af).
(2) Check di spl ay. Di spl ay format is as follous:

as. Perform keyboard di agnostic.

NOTE
Upon initiating this test ENTER 7 KEYS WWTH N 8 SECONDS is requested on the screen. Seven identical al phanumeric characters should be entered within time allotted. This phase of the test is executed twice.
(1) Sel ect test 20.
(2) Make data entry when requested.
(3) Check di spl ay for errors.

Table 2-14. KEYBOARD DIAGNOSTIC ERROR CODES
Code Error

Buffer swap error

052
Buffer error

NOTE

- Next part of test enables checkout of key switch codes for 78-key keyboards. Primary message indicates keyboard node (SH FT or unSH FT). Second nessage indi cates key number to be pressed. As appropriate keys are pressed, audi ble si gnal indi cates the key entered was sensed correctly. Errors are displayed on screen in the following format.

KEY NO.	REQ	IS	6 COLUMS
005	20	$2 A$	7 RONS

- The following keys are i nactive66, 67, 69, 71, 72, 73, and 74. If pressed, they will result in errors.
- If key is not sensed, or if no key is entered within 5 see, KEY XXX ENIERED NO $\mid-1 /$-yEs R message is displayed. NO and cursor left tri ggers RE-ENTER KEY NO XXX nessage.
- For the purpose of thi s test, the two SH FT keys, SH FT LOCK and RESET are not numbered.
(4) Enter appropriate to conti nue with testing.
(5) Enter YES \square to cause error nessage to be di spl ayed.
(6) Conti nue with remai nder of test.
at. Perform key code dump test.
(1) Sel ect test 21 (step af).
(2) Press first key.
(a) Code nessage accompani ed by hex code will appear on di splay.
(b) Check di spl ayed code agai nst key code table to determine errors.
(3) Continue with rest of keys to be checked.
au. Perform character generator diagnostic test.
(1) Press SH FT/cursor I eft.
(2) Press 22 and RET.
(3) Press SH FT/ cursor I eft (pause).
(4) Press space bar to obtai n ENTER CODE NNN.. di splay.
(5) Press up to three numbers and RET, keyboarded numbers will be di spl ayed for 4 see, folloned by PAUSE.
(6) Sequence nay be repeated by repeating steps 3 through 5 .
(7) I nspect CRT di spl ay for:
(a) Sharply focused characters.
(b) Nb tilt of characters.
(c) Full screen deflection.
av. Perform general RAM test.
(1) Press 2, 5, and RETURN
(2) Errors are di splayed in middle left portion of screen. Error di spl ayed is current error.
(3) Press SH FT/ cursor right to continue test.
(4) Error display is in the following format.
\#\#\#\# REQ XX IS YY
Where \#\#\#\# is hex location in error.
Where XX is hex requi red val ue.
Where YY is actual val ue found at that particular address.

NOTE

When test is complet, program control returns to the supervisor routine.
aw Perform copy quality di agnostic test.

NOTE

Sel ecting test 26 aut onatically incl udes the running of tests 27 through 29.
(1) Sel ect test 26.
(2) Check di spl ay for errors.
ax. Turn off power switch.
ay. Renove self di agnostic board and rei nstall 32K ROM PROM Board.
az. Rei nstall center panel.
ba. Pl ace di sc box in conveni ent location.
bb. Grasp plastic handle.
bc . Screw knurled knob left.
bd. Slide di sc to right and out.
be. Place di sc in di sc box.
bf. Cose top left panel.

2-20.2 Repl ace Carri age Escapenent Board. LVC Board, Font Interface III Board. D A and Stepper I| Board, Keyboard and Interface III Board and Character Generator S/A 2 Board.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
SUPPLI ES: Carriage Escapenent Board LVC Board
Font Interface III Board D/A and Stepper II Board Keyboard Interface III Board Character Generat or S/A 2 Board

WARNING
Death or serious injury may occur from el ectrical shock unl ess power is turned off before servi cing.

NOTE
These printed circuit boards must be in the illustrated positions at all ti nes.
a. Raise top left panel.
b. Renove center panel.

c. Turn of f power switch.
d. Turn off circuit breaker.

e. Di sconnect pl ugs J36 and J 35.
f. Grasp tabs and remove defective printed circuit board.

g. If repl acing the carriage escapenent board, set switches D5 and D6 as shown on focus setting table.
h. Install new printed circuit board.
i. Reconnect pl ugs J 36 and J 35 .
j. Install center panel.
k. Lower top left panel.
I. Perform di agnostic test.

2-20.3 Repl ace 8K X 8 RAM Board, 32K ROM PROM Board, CPU Dat a Board and CPU Control Board.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
SUPPLI ES: 8K X 8 RAM Board
32K ROM PROM Board
CPU Data Board
CPU Control Board

> WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is turned off before servicing.

a. Open top left panel.
b. Renove center panel.

c. Turn off power switch.
d. Turn off circuit breaker.

e. Grasp tabs and lift out defective board.
f. Install new board.
g. Rei nstall center panel.
h. Turn on circuit breaker.
i. Turn on power switch.
j. Close top left panel.
k. Perform di agnostic test.

2-20. 4 Repl ace Disc Track LED and Cable Assenbly.
MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: . 050 in. Hex Head Key Wench Fl at Tip Screndri ver

SUPPLIES: Disc Track LED and Cable Assenbly
$\overline{\text { WARNING }}$
Death or serious injury may occur fromel ectrical shock unl ess power is turned off before servi cing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

REAR PANEL REMOVED
d. Renove front panel.

e. Loosen setscrew on di sc track LED.
f. Renove nounting screus.
g. Slide font pickup unit to left.
h. Renove defective di sc guide, di sc track LED, and cable by di sconnecting P29.
i. Install new di sc track LED, disc guide, and cable.
j. Rei nstall nounting screws.
k. Ti ghten di sc track LED setscrew
I. Install front panel.
m Turn on circuit breaker.
n. Turn on power switch.
0. Close top left panel.
p. Perform di agnostic test.

2-20.5 Repl ace Dri ver Supply Board.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: 3/ 16 in. Hex Head Key Wench
Fl at Tip Screudri ver
SUPPLI ES: Dri ver Supply Board

$$
\overline{\text { WARNING }}
$$

Death or serious injury nay occur from el ectrical shock unl ess power is turned of f before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

d. Depress l ever.
e. Open front panel magazi ne door.
f. Renove lower front panel.

g. Di sconnect pl ugs J114, J 116, speaker leads and ri bbon connect or.
h. Renove 8 hex head nounting screws.
i. Renove defective driver supply board.
j. I nstal I new dri ver supply board. Ti ghten nounting screws.
k. Reconnect ri bbon connect or, speaker I eads, pl ugs J 116 and J 114.
I. Rei nstall lower front panel.
m Close front panel magazi ne door.
n. Turn on circuit breaker.
0. Turn on power switch.
P. Close top left panel.
q. Perform di agnostic test.

2-20.6 Replace Bridge Rectifier.

MDS: 35E, Speci al El ectroni c Devi ces Repai rer
TOOLS: Fl at Tip Screndri ver
SUPPLIES: Bridge Rectifier

WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is turned off before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

d. Depress I ever.
e. Open front panel magazi ne door.
f. Renove lower front panel.

g. Tag and di sconnect leads to bridge rectifier.
h. Renove defective bridge rectifier.
i. Install new bridge rectifier.
j. Attach leads to new bridge rectifier.
k. Rei nstall lower front panel.
I. Turn on circuit breaker.
m Turn on power switch.
n. Close front panel magazi ne door.
o. Close top left panel.
p. Perform di agnostic test.

2-20.7 Repl ace Power Supply.

MDS: 35E, Speci al El ectronic Devi ces Repai rer TOOLS: Fl at Tip Screudri ver

3/ 16 in. Hex Head Key Wench
SUPPLI ES: Power Supplies
Silicone Grease (Item 13, Appendix E)

WARNING
Death or serious injury may occur from el ectrical shock unl ess Power is turned off before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

d. Depress I ever.
e. Open front panel magazi ne door.
f. Renove lower front panel.

g. Di sconnect plugs JIII and J 110
h. Renove nounting screus.
i. Renove defective power supply.
j. Coat back of new power supply with silicone grease.
k. Install new power supply and secure with nounting screws.

1. Reconnect plugs J1ll and J 110
m Turn on circuit breaker.
n. Turn on power switch.
2. Perf orm power supply adj ust nent (paragraph 2-20.23).
P. Rei nstall lower front panel.
q. Close front panel magazi ne door.
r. Close top left panel.
s. Perform di agnostic test.

2-20.8 Replace Stepping Motor.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver
. 050 in. Hex Head Key Wench
$5 / 32$ in. Hex Head Key Wench 1/4in. Nut Driver

SUPPLI ES: Mor or

WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is turned of f before servicing.

a. Open top left panel.

b. Turn off power switch.
c. Turn off circuit breaker.

d. Depress I ever.
e. Open front panel magazi ne door.
f. Renove right si de panel.

g. Renove tuo screws from rear of stepping not or and renove cover.
h. Tag and di sconnect wi res from notor.

i. Loosen knob shaft setscrew at notor and renove paper feed knob.
j. Renove light baffle.

CAUII ON
Handle stepping notor with two hands. Stepping notor is heavy. If not or is dropped, it will be danaged. Do not chip gear teeth or the gears will be danaged beyond repai r .
k. Renove three notor nounting screvs.

1. Renove defective stepping notor.
$m \quad$ Renove gears (A and B) from not or shaft.
n. Install gears on new notor shaft but do not tighten setscreus.
2. Install new notor and secure with nounting screws.
p. Aine gear B with gear C and ensure gear teeth nesh.
q. Tighten setscrews on gear B,
r. Aline gear A with gear D and ensure gear teeth mesh.
s. Tighten setscrevs on gear A
t. Reconnect notor wi res and replace cover.
u. Reinstallight baffle.
v. Rei nstall paper feed advance knob and shaft and tighten setscrews.
w. Cl ose front panel magazi ne door.
x. Rei nstall right side panel.
y. Close top left panel.
z. Turn on circuit breaker.
aa. Turn on power switch.
ab. Perform di agnostic test.

2-20.9 Replace Shutter Assembly,

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver Spring Clip Pliers

SUPPLI ES: Switch
Sol enoi d

WARNING

Death or serious inj ury nay occur fromel ectrical shock unl ess power is turned off before servicing.

a. Open top left panel.
b. Renove center panel.
c. Renove front panel.

d. Turn off power switch.
e. Turn off circuit breaker.
f. Tag and renove wi res from switch.

g. Dï sconnect spriing.
h. Renove nounting screvs from switch.
i. Renove retaining clip and pin from sol enoid shaft.
j. Renove defective sol enoid.
k. Install new sol enoid and secure with nounting screws.

1. Rei nstall pin and retai ning clip.
m Connect wires to new sol enoid.
n. Rei nstall front panel.
o. Rei nstall center panel.
p. Turn on circuit breaker.
q. Turn on power switch.
r. Close top left panel.
s. Perform diagnostic test.

2-20. 10 Replace Carriage Cables.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
PERSONEL: Four persons are required to performthis procedure.
TOOS : Flat Tip Screudri ver 3/8 in. Combi nati on Wench 3/8 in. Open End Offset Ignition Wench 7/ 16 in. Conbi nati on Wench 5/ 64 in. Hex Head Key Wench 12 in. Rule

SUPPLIES: Carriage Cabl es Electrical Hookup Wire

WARNING
Death or seri ous injury may occur fromel ectrical shock unl ess power is turned of f before servicing.
a. Open top left panel.
b. Renove center panel.

c. Turn off power switch.
d. Turn of f circuit breaker.

e. Renove cassette mounting bracket.
f. Disconnect spring and renove top right panel.

WARNING

Thi s procedure requires four persons. The composing machi ne wei ghs 485 pounds. Serious personnel injury may occur unl ess an adequate number of persons are used to nove equi pnent.
g. Move composing machi ne away from wall (paragraph 2-16.10).
h. Renove rear panel.

i. Hold rear locking nut with thin $3 / 8$ in. ignition wrench, while loosening front locking nut with standard $3 / 8$ in. conbi nation wrench.
j. When front locking nut is loose, place screudri ver in sl ot on cable end connector and continue loosening front locking nut until free of connect or .
k. Repeat step j. above, and renove rear locki ng nut.
l. Renove flat washer and compressi on baffle.

NOTE

Tensi on is now relieved fromthe carriage cables, and both cables are free to be threaded from nachi ne.
m Renove defective carriage cables.

NOTE
The following is both the installation procedure and alinement procedure for the carriage cabl es.
n. I nsert bead end of first new carriage cable into rear sl ot of notor pulley.
o. Wap carriage cable left around notor pulley 6-1/2 turns.

p. Thread carriage cable from the bottom through groove of left pulley, around the pulley to idler pulley upper groove, then to the wayrod support casting.
q. Secure first carriage cable with compressi on baffle, flat washer and two locki ng nuts.
r. Thread beaded end of second carriage cable into front slot of notor pulley.

5. Wap carriage cable around notor pulley, to the right, 2-1/4 turns.
t. Thread carriage cable from the bottom through groove of right pulley, around pulley to idler pulley lower groove, then to wayrod support casting.
u. Secure second carriage cable with flat washer and tho locking nuts.
v. Rei nstall rear panel.
w Mbve composi ng machi ne back to wall (paragraph 2-16.10).
x. Rei nstall top right cover and reconnect spring.
y. Rei nstall cassette mounting bracket.
z. Turn on circuit breaker.
aa. Turn on power switch.
ab. Rei nstall center panel.
ac. Close top left panel.
ad. Perform di agnostic test.

2-20. 11 Replace Carriage Mbtor_

MDS: 35E, Speci al El ectronic Devi ces Repai rer
PERSONEL: Four persons are required to perform this procedure.
TOOLS: Fl at Tip Screudri ver
3/8 in. Conbi nation Wench
3/ 8 in. Open End Offset Ignition Wench
7/ 16 in. Conbi nation Wench 5/64 in. Hex Head Key Wench 5/32 in. Hex Head Key Wench . 050 in. Hex Head Key Wench 1/4in. Nut Driver

SUPPLI ES: Carriage Mbtor Carriage Cables

WARN NG
Death or serious injury may occur fromel ectrical shock unl ess power is secured bef ore servi ci ng.
a. Open top left panel.

b. Renove center panel.
c. Turn off power switch.
d. Turn off circuit breaker.
e. Renove cassette nounting bracket.
f. Disconnect spring and renove top right panel.

WARNING

Thi s procedure requi res four persons. The composing machi ne wei ghs 485 pounds. Seri ous personnel injury nay occur unl ess an adequate number of persons are used to nove equi pment.
g. Move composi ng nachi ne avay from wall (paragraph 2-16.10).
h. Renove rear panel.
i. Renove carri age cabl es (paragraph 2-20.10).

j. Renove tuo socket head screvs and defective carriage notor.
k. Install new notor and secure with screns.

NOTE
When carriage notor is replaced, al ways install new carriage cables.
I. I nstall new carri age cabl es (paragraph 2-20.10).
m. Rei nstal lear panel.
n. Move composing machi ne back to wall (paragraph 2-16.10).
0. Reinstall top right cover and reconnect spring.
p. Rei nstall cassette mounting bracket.
q. Turn on circuit breaker.
r. Turn on power switch.
s. Rei nstall center panel.
t. Close top left panel.
u. Perform di agnostic test.

2-20. 12 Repl ace I nterl ock Swi tch.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
PERSONEL: Four persons are required to performthis procedure.
TOOLS: Fl at Tip Screudri ver
SUPPLIES: Interlock Switch

WARNING
Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Renove top left panel.
b. Turn off power switch.
c. Turn of f circuit breaker.

WARNING

Thi s procedure requi res four persons. The composing machi ne wei ghs 485 pounds. Serious personnel injury may occur unl ess an adequate number of persons are used to nove equi pnent.
d. Move composing nachi ne away from wall (paragraph 2-16.10).
e. Renove rear panel.
f. Tag and di sconnect interlock switch wi res.
g. Renove switch nounting screw and renove defective interlock switch.
h. Install new interlock switch and secure with screw
i. Connect interlock switch wires.
j. Reinstall rear panel and close top left panel.
k. Mbve machi ne back to wall (paragraph 2-16.10).

1. Perform di agnostic test.

2-20. 13 Repl ace Row Shift Motor.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver
7/64 in. Hex Head Key Wench
1/8 in. Hex Head Key Wench
9/64 in. Hex Head Key Wench
SUPPLIES: Row Shift Motor

WARNING
Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Turn off power switch.
b. Turn of f circuit breaker.
c. Renove left si de panel.

d. Di sconnect pl ug J 120.

e. Loosen setscrews in coupling.
f. Renove nounting screus and defective row shift notor.
g. Install new row shift notor and secure with nounting screws.
h. Slide coupling over notor shaft and tighten setscrews on coupling.
i. Reconnect plug.

j. Open top left panel.
k. Pl ace di sc box in conveni ent location.
I. Open di sc box.

m Grasp knurled knob and renove di sc from di sc box.

n. Grasp plastic handle.
o. Place left edge of disc into slot.
P. While hol ding plastic handle, tighten knurled knob.
q. Spi n di sc usi ng plastic handle. It should rotate easily.

s. Set power switch to ON Cl ose top left panel.
t. Press RESET and DATA several times until di stinct clicking sound is heard.

NOTE
Be sure cam follower roller is centered in dwell of cam If adj ust ment is required, bend camlimit stop plate.
u. Select FONT 1. Cam follower roller should be centered in dwell of cam
v. Repeat step u. for fonts 2, 3 and 4.
w Enter the following function field data: SIZE, LI NE LENGTH 30, STORE PL 30, STORE SL 12 and FONT 1.
x. Type the following: The quick brown fox jumps over the Iazy dog.
y. Change to FONT 2 and repeat step x.
z. Change to FONT 3 and repeat step x.
aa. Change to FONT 4 and repeat step x.
ab. Press CONTRO and e (end of $j \mathrm{ob}$).

ac. Depress paper cut of handle.
ad. Pul I take- up cassette forward.
ae. Level op i mage.
af. Repl ace take-up cassette.
$D \bigcirc G \quad$ good image
$\sqcup \cup \quad$ POOR IMAGE
ag. Inspect copy for cutoffs on any font.
ah. If fonts are incorrect, repeat steps t. through ag.
ai. Open top left panel. Set power switch to OFF.
dj. Remove di sc and store.
ak. Reinstall left side panel.
al. Turn on circuit breaker.
am Turn on power switch.
an. Close top left panel.
ac. Perform di agnostic test.

2-20.14 Adi ust Setting on Compatabilitv Switches.

MDS: 35E, Speci al El ect roni c Devi ces Repai rer TOOLS: Fl at Tip Screndri ver

> WARNING

Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Open top left panel.
b. Renove center cover.

c. Turn of f power switch.
d. Turn off circuit breaker.

e. Grasp tabs and renove carriage escapenent board.

f. Check position of switches D5 and D6 on carriage escapenent agai nst focus setting chart.
g. Set switches D5 and D6 as indicated on focus setting chart.
h. Rei nstal l carri age escapement board.
i. Reinstall center panel.
j. Turn on circuit breaker.
k. Turn on power switch.
I. Close top left panel.
m Perform di agnostic test.

2-20.15 Repl ace Brightness Control

MOS: 35E, Speci al El ectronic Devces Repai rer
TOOLS: Fl at Tip Screndri ver
Sol deri ng/ Desol dering Set
. 050 in. Hex Head Key Wec h
$1 / 2$ in. Conbi nati on Wench
SUPPLI ES: Potenti oneter
Sol der (Item 23, Appendi x E)

WARNING
Death or serious injury may occur fromel ectrical shock unl ess power is secured bef ore servi ci ng.

a. Open top left panel.

b. Turn of f power switch.
c. Turn of f circuit breaker.

d. Renove nounting screws from di splay nonitor cover.
e. Renove cover.

f. Tag and desol der wi res from potentioneter.
g. Renove two screws.
h. Renove locknut and rai se nounting bracket.
i. Loosen setscrews and renove thumb di al.
j. Renove defective potentioneter.
k. Install new potentiometer.
I. Rei nstall thumb di al and tighten setscrews. Rei nstall retai ni ng l ocknut.
m Reinstall nounting bracket with two screws.
n. Reconnect wires.
0. Rei nstall cover.
p. Turn on circuit breaker.
q. Turn on power switch.
r. Close top left panel.
s. Perform di agnostic test.

2-20.16 Repl ace Film Out Switch.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: FI at Tip Screndri ver
SUPPLI ES: Switch

WARN NG

Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Turn off power switch.
b. Turn off circuit breaker.
c. Depress lever.
d. Open front panel magazi ne door.

e. Rotate handle upward.
f. Rai se gate until it locks in place.

g. Tag and renove three wi res.
h. Renove screws and defective film out switch.
i. Install new film out switch.
j. Reconnect wires.
k. Lower gate.

1. Rotate handle upuard.
m Close front panel nagazi ne door.
n. Turn on circuit breaker.
2. Turn on power switch.
p. Perform diagnostic test.

2-20.17 Repl ace Movable Knife.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Needle Nose Pliers Spring clip Pliers
5/ 16 in. Conbi nation Wench
3/8 in. Conbi nation Wench
5/64 in. Hex Head Key Wench
7/64 in. Hex Head Key Wench
5/ 32 in. Hex Head Key Wench
1/4in. Nut Driver
5/ 32 in. Nut Driver
Fl at Tip Screudri ver
SUPPLI ES: Movable Knife

$$
\overline{\text { WARNING }}
$$

Death or serious injury nay occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Renove copy ai d.
b. Open top left panel.

c. Turn off power switch.
d. Turn off circuit breaker.

e. Renove right si de panel.
f. Renove center panel.
g. Depress lever.
h. Open front panel magazi ne door.

i. Renove cassette.

j. Renove five screns from cassette mounting bracket.
k. Renove cassette nounting bracket.

I. Renovesetscrews and paper feed knob.
m Renoveseven screvs fromlight baffle panel.
n. Renovet wo screvs from insi de nagazi ne.

NOTE

The two hex head screws located at rear of magazi ne secure magazi ne to frame bracket.
o. Renove two hex head screvs from upper rear of nagazi ne,

p. Di sconnect connector to shutter sol enoid.
q. Renove magazi ne from composing machi ne. I nspect magazi ne for damage and repl ace if necessary.

r. Rel ease torsi on spring from knife actuat or arm and stud on left side.
s. Renove pi vot screus.
t. Open cassette assenbly.
u. Compress springs by pushing knife blade agai nst springs. Then pi vot knife upward.

NOTE
Black spring must be placed on right side. Do not lose springs and washers,
v. Renove defective novable knife.
w Reinstall springs and washers.
x. Install new novable knife.
y. Rei nstall pi vot screws.
2. Reinstall torsion spring on stud and knife actuator arm
aa. Rei nstal magazi ne into composi ng machi ne.

NOTE
Be sure roll pins are in magazi ne frane. Be sure knife armis behind fl ange.
ab. Reconnect shutter sol enoid and sol enoi d connector.
ac. Rei nstall two screws inside magazine.
ad. Rei nstall two hex head screws at rear of magazi ne.
ae. Rei nstall front panel and seven screvs.
af. Rei nstall paper feed knob and tighten setscreus.

NOTE
Check gears for proper gear nesh.
ag. Reinstall cassette nounting bracket with five screus.

ah. Hol d cover up.
ai. Insert cassette.

NOTE

Be sure knobson cassette fit in their slots.
aj. Pull cover down until click is heard.
ak. Rotate thumb di al 5 to 6 times.
al. Pull up on locking latch.
am Turn paper feed knob upward. If thumb di al rotates, paper is loaded correctly.
an. Close front panel magazi ne door.
ao. Rei nstall center panel.
ap. Rei nstall right side panel.
aq. Reinstall top left panel.
ar. Rei nstall copy aid.
as. Turn on circuit breaker.
at. Turn on power switch.
au. Perform di agnostic test.

2-20. 18 Replace Font Pi ckup PC Board,

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Flat Tip Screudri ver
1/4in. Nutdriver
Sol dering and Resol dering Set
SUPPLI ES: Font Pi ckup PC Board Sol der (I tem23, Appendi x E)

WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is secured bef ore servi cing.

a. Open top left panel.

b. Turn off power switch.
c. Turn of f circuit breaker.

d. Renove three screws and cover.

e. Tag and desolder wires.
f. Remove screws and stud nuts.
g. Remove defective font pickup PC board.
h. Install new font pickup PC board and secure with screws and stud nuts.
i. Solder wires to new board.
j. Reinstall cover and secure with screws.
k. Turn on circuit breaker.
I. Turn on power switch.
m. Close top left panel.
n. Perform diagnostic test.

2-20.19 Repl ace Variator/Collimat or Motor(s).
MDS: 35E, Special El ectronic Devi ces Repai rer
TOOLS: Flat Tip Screudriver
1/16 in. Hex Head Key Wench 7/ 64 in. Hex Head Key Wench

SUPPLI ES: Variator Mbtor Collinator Motor

WARNING

Death or serious injury may occur fromel ectric shock unl ess power is secured bef ore servi ci ng.

a. Open top left panel.
b. Turn off power switch.
c. Turn off circuit breaker.

d. Renove cassette nounting bracket and right top panel.

Variator notor is one cl osest to you. Helix screw rotates easily by hand.
e. Loosen two setscreus.
f. Unpl ug P43, or J 28 as necessary.

9" Renove nounting screws. Then slide defective variator notor from nounting bracket.
h. Loosen two renai ni ng setscreus and renove notor shaft collar.
i. Install shaft collar on new notor and tighten setscrews.
j. Ti ghten remai ning setscrevs.
k. Secure notor assenbly with nounting screvs.
I. Reconnect P43, or J 28 as necessary.
m Rei nstall right top panel.
n. 'Turn on circuit breaker.
0. Turn on power switch.
p. Close top left panel.
q. Perform di agnostic test.

2-20.20 Repl ace Limit Switch(es).

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: FI at Tip Screudri ver
3/32 in. Hex Head Key-Wench 5/ 16 in. Open End Wench

SUPPLIES: Limit Switch(es)

WARNING

Death or serious injury nay occur from electrical shock unl ess power is secured bef ore servi ci ng.

a. Renove top left panel, center panel, cassette nounting bracket, and top right panel.
b. Turn off power switch.
c. Turn off circuit breaker.

d. Tag and di sconnect wires fromlimit switch.
e. Renove nounting screus, plate, and defective limit switch.
f. Install new linit switch, plate, and secure with nounting screus.
g. Connect wi res.
h. Rei nstall top left panel, center panel and top right panel and cassette nounting bracket.
i. Turn on circuit breaker.
j. Turn on power switch.
k. Close top left panel.

1. Perform di agnostic test.

2-20.21 Replace Constant Voltage Transformer.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Cross Tip Screndriver Fl at Tip Screndri ver 3/ 8 in. Conbi nati on Wench $1 / 2$ in. Conbi nation Wench 3/4 in. Conbi nation Wench 12 in. Adj ustable Wench

SUPPLI ES: Constant Vol tage Transformer

WARNING

Death or serious injury may occur from electrical shock unl ess poner is secured bef ore servi ci ng.

a. Open top left panel.

b. Turn off power switch.
c. urn off circuit breaker.

d. Loosen conduit nuts.

e. Renove end cover.
f. Tag and di sconnect i nput/ out put wi res from transfor mer.

g. Renove defective transformer and bracket from wall.
h. Mbunt new transf ormer assenbly on wall.
i. Reconnect wiring.
j. Rei nstal l end cover.
k. Tighten conduit nuts.
I. Turn on circuit breaker.
m Turn on power switch.
n. Close top left panel.
0. Perform di agnostic test.

2-20.22 Adj ust Power Supply Vol tages.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Di gital Multi meter J ewel ers Screudri ver Set

WARNING

Death or seri ous injury may occur fromel ectrical shock unl ess power is secured bef ore servi ci ng.

a. Renove front panel s.
b. Open top left panel.

c. Turn on power switch. Then wait 3 minutes.
d. Set multineter controls to measure +5 V .

e. Locate power supply and notherboard.

f. Pl ace negative lead on TP4; positive lead on TP2.
g. Adjust R8 for $+5 \pm 0.01 \mathrm{~V}$.
h. Renove positive lead from TP2 and negative lead from TP4.
i. Set up multimeter to measure - 12 V .
j. Connect negative lead to TP4 and positive lead to TP1.
k. Adj ust R36 for $\mathbf{- 1 2} \pm 0.01 \mathrm{~V}$.

1. Renove multi neter leads.
m Rei nstall front panels.
n. Pl ace power switch to OFF.
2. Reinstall top left panel.
P. Perform di agnostic test.

2-20.23 Adjust Fl ash Intensity and Large Size.

MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Alinement Tool Kit
Pocket Knife
Test Disc
Digital Multineter
El ectrical Hookup Wire (2 ft)
Red Test Lead
Bl ack Test Lead

a. Renove copy aid.
b. Open top left panel.
c. Renove center panel.
$\overline{\text { WARNING }}$
Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

d. Turn off power switch.
e. Turn off circuit breaker.

f. Renove D/A stepper board.

9. Use piece of el ectrical hook-up wire and connect one end at junction of R8 and C14.
h. Rei nstal I D/A stepper board.

i. Connect positive lead of multimeter to TP3 of D/A stepper board.
j. Connect negative lead of maltineter to electrical hook-up wire.
k. Set multimeter controls to indicate-9 V.

I. Open boxcontaining font pick-up test disc.
m Grasp knurled knob and renove from box.

n. Hold disc by plastic handle and place left edge of disc into slot.
0. Ti ghten knurled knob.
p. Spin disc slowly if properly inserted, it will turn easily.

q. Turn on circuit breaker.
r. Set power switch to ON then close top left panel.

5. Adj ust R15 on D/A stepper board for multimeter indication of -9 $\pm 0.01 \mathrm{~V}$.
t. Open top left panel. Set power switch to OFF.

u. Renove D/A stepper board.
v. Renove el ectrical hook-up wire from junction C14 and R8.
w Rei nstall D/A stepper board.

x. Set multimeter to indicate 1.2 V dc.
y. Connect black lead (-) to TP2 on D/A stepper board.
z. Connect red lead (+) to TP1.
aa. Qpen top left panel. Set power switch to ON Then cl ose top I eft panel.
ab. Press RESET and DATA
ac. Press SIZE, 7 and 4, press LI NE LENGTH 4500, PL 780, SL 780 and FONT 1.

ad. Press RET.
ae. Adjust R9 for multimeter indication of $1.2 \pm 0.01 \mathrm{~V}$.
af. Open top left panel. Turn off power switch.
ag. Disconnect multimeter leads from TP1 and TP2.
ah. Place empty disc box in convenient location.

ai. Grasp plastic handle.
aj. Unscrew knurled knob.
ak. Use knurled knob to slide disc to right and out.
al. Place di sc in empty box.
am Pl ace disc box in proper storage area.

an. Rei nstall center panel.
ao. Close top left panel.
ap. Repl ace copy ai d.
aq. Perform di agnostic test.

2-20.24 Adjust Fl ash Tube Vertical and Horizontal.
MOS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Fl at Tip Screndri ver Test Disc

SUPPLI ES: Phot ographi c Paper

WARNING

Death or serious injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

NOTE

Procedure should be accomplished if character inages are not evenly exposed from top to bottom or character inages are not evenly exposed fromleft to right.

a. Vertical Adjustment.
(1) Renove copy ai d.
(2) Open top left panel.

(3) Turn off power switch.

(4) Loosen, but do not renove, two screws.
(5) Renove flash power supply cover.

(6) Loosen adj ust nent I ocki ng screus.
(7) Loosen eccentric locknut.

NOTE

If tops of characters are Iight, lower flash tube socket. If bottom of characters are light, rai se flash tube socket.
(8) Adj ust eccentric stud.
(9) Tighten eccentric Iocknut while hol di ng eccentric stud.
(10) Ti ghten adj ustment I ocki ng screus.
b. Horizont al Adj ustnent.

(1) Loosen eccentric stud lock.

NOTE

If I eft side of characters are light, nove power supply to right (toward disc). If right side of characters are light, nove power supply to left (avay from disc).
(2) Adjust eccentric stud.
(3) Ti ghten eccentric stud lock while hol ding eccentric stud.
c. Perform Diagnostic Test.

2-20.25 Aline Left Margin.

MDS: 35E, Speci al El ectroni c Devi ces Repai rer
TOOLS: Fl at Tip Screudri ver 12 inch Rule

WARNING

Death or serious injury may occur fromel ectrical shock unl ess power is secured bef ore servicing.

a. Renove copy ai d.
b. Rai se top left panel.

c. Turn off power switch.
d. Turn off circuit breaker.

e. Renove right panel.
f. Locate carriage escapement.

g. Loosen tuo screws on actuator.
h. Slide actuator to right or left approximately 0.25 in. (6.35 mm).
i. Tighten two screws.
j. Rei nstall si de panel.
k. Turn on circuit breaker.

1. Turn on power switch.
m Cose top left panel.
n. Rei nstall copy aid.
2. Perform di agnostic test.

2-20. 26 Focus and Aline LED.
MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Oscilloscope, Dual Trace
10X Probe
Digital Miltineter
Test Disc
Fl at Tip Screudri ver, 8 in. shaft
Fl at Tip Screudriver; 2 in. shaft
Uni versal Test Lead Kit
5/64 in. Hex Head Key Wench

WARNING
Death or seri ous injury may occur fromel ectrical shock unl ess power is secured bef ore servi ci ng.

a. Renove copy aid.
b. Open and renove top left panel.
c. Renove front center panel.

d. Turn off power switch.
e. Turn off circuit breaker.

f. Obtain di sc box containing font al inement test disc.
g. Open di sc box.

h. Grasp knurled knob and renove disc from box.

i. Hold disc by plastic handle. Place left edge of disc into slot.
j. Ti ghten knurled knob.
k. Use plastic handle to slow spindisc. It should turn easily.

I. Renove three screvs from font pick-up unit.
m Renove cover.

n. Disconnect pl ug P22.

0. Connect lead from +12 V TP6 on notherboard to P22 orange lead.
p. Connect lead from ground TP4 on notherboard to P22 black lead.
q. Set up oscilloscope for dual-trace operation.

r. Turn on circuit breaker.
s. Turn on power switch.

t. Loosen lockscrew
u. Rotate slit orientation hub until reference mark is oriented as shown in above illustration.
v. Loosen focus adj ust screw
w Push tube until hub neets casting.
x. Attach oscilloscope probe to strobe test point on PC board.

NOT FOCUSED

FOCUSED

OSCILLOSCOPE DISPLAY
NOTE
Applying light pressure with finger on orientation hub will aid in focusing.
y. Adj ust focus screw until di splay is focused.
2. Renove oscill oscope probe fromstrobe test point. Attach probe leads to inner and outer data test points.

NOT ALIGNED

ALIGNED
aa. Rotate hub until tho signals are alined.
ab. Ti ghten lockscrew

NOTE
M ni mum vol tage amplitude is 2.5 V. Maxi mum vari ation between si gnal is 0.25 V .

Adj ust ampl itude using adjust ment resi stors on font pick up board.

Set power switch to OFF.
Di sconnect I eads from P22 and notherboard.
Connect P22 to J 22.
Rei nstall font pick-up cover.
Renove font pick-up test disc.
Install center front panel.
Turn on mai n power switch.
Install and close top left panel.
Turn on circuit breaker.
Rei nstall copy aid.
Perform di agnostic test.

2-20.27 Adjust I nput/ Moni tor Unit Di spl ay.

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: Test Disc
Sel f Di agnostic Board
Digital Miltineter
A i nement Tool Kit
El ectrical Clip
SUPPLI ES: Rubber FI oor Mat Rubber G oves Mrror

WARNING

Death or seri ous injury may occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Renove copy ai d.
b. Open top left panel and renove center panel.

c. Turn off power switch.

SWITCH\#1

SWITCH \# 2

value of the highest ram address

VALUE OF THE LOWEST RAM ADDRESS

SWITCH \# 3

8	7	6	5	4	3	2	1
						CPU PROM MAIN PGM NNOT PRESENT	PROM ON CPU
OFF	OFF	OFF	OFF	OFF	OFF	YES-ON NO-OFF	YES-ON NO-OFF

SWITCH \# 4

8	7	6	5	4	3	2	1
		TURRETT	FLOPPY	PUNCH READER	MAX. PONT SIZE 74 POINT	MODEL COMP/SET	
OFF	OFF	OFF	OFF	OFF	OFF	ON	ON

d. Set all switches according to machi ne configuration on di agnostic board. Then renove 32k ROM PROM PC board.
e. Insert di agnostic board into open bus socket.

f. Renove tuo screus.
g. Lift cover clear of nonitor.

h. Connect black lead of multimeter to ground (1).
i. Connect red lead to emitter of Q150.

CAUTI ON

Be sure red lead does not touch base of Q10 and/ or components. Danage to equi pment nay occur.

VERTICAL VIDEO CIRCUIT CARD (COMPONENT VIEW)
j. Set multimeter controls for indication of $\mathbf{+ 7 0} \mathrm{V}$.

k. Turn on power switch.

NOTE

Al low ten minte warm up.
I. Place disc box containing test disc in conveni ent location.
m Open di sc box.

n. Grasp knurled knob and renove di sc from box.

0. Grasp disc by plastic handle. Place left edge of discinto slot.
p. Ti ghten knurled knob.
q. Replace top left and center panel s.

NOTE
Display will indicate eight lines of characters for CRT al inenent.
w. Inspect di splay for out-of-focus characters.

WARNING

Death or serious injury may occur. Wear rubber gl oves. Shock hazard is present. Use well-insulated, non- netallic tools. Use rubber nat on floor.

x. Adj ust R158 for maltimeter indication of 70 V dc.
y. Renove multimeter leads.
z. Place mirror in front of di splay.
aa. Position mirror so that you can view di splay from rear of nonitor.
ab. Adj ust L50 for stable di splay.
ac. Adj ust L53 to produce 8.75 in . (222.25 mm) wide video di splay.
ad. Adj ust R12 to produce 5.75 in . (146.05 mm) high video di splay.
ae. Adjust R17 to produce uniform character hei ghts fromtop to bottom of screen.
af. Adj ust two centering tabs on CRT yoke to center raster di splay.
ag. Adj ust R70 for best focus in center of screen.
ah. Adj ust L52 for best focus at edges of screen.
ai . Al ternately adj ust R70 and L52 for best focus.

aj. Press SH FT/ cursor left key.
ak. Press SH FT/ cursor left key again.
al. Open top left panel.
am Renove center panel.
an. Set power switch to OFF.
ao. Renove test disc.
ap. Pl ace test disc in disc box.
aq. Renove di agnostic board. Rei nstall 32k ROM PROM PC board.
ar. Rei nstall cover on input/ noni tor unit.
as. Rei nstall center panel. Close top left panel.
at. Rei nstal l copy aid.

2-20.28 Adj ust Basel ine.

MDS: 35E, Speci al El ectroni c Devi ces Repai rer
TOOLS: 3/ 32 in. Hex Head Key Wench
5/32 in. Hex Head Key Wench
7/ 64 in. Hex Head Key Wench

Death or seri ous injury nay occur from el ectrical shock unl ess power is
secured bef ore servicing.

a. Open top left panel.

b. Turn off power switch, then turn composing nachi ne breaker OFF.
c. Renove top left panel.
d. If basel i nes between font 1 and font 4 are separated by more than 0.005 in. (0.127 mm), adj ust mechani cal timing.

(1) Loosen three timing lockscrevs.

NOTE
20 degrees rotation of nechanical timing equal s 0.005 in . at 36 point.
(2) If font 4 " Z " is LOW turn mechanical timing screw to the left.
(3) If font 4 "Z" is HGH, turn nechanical timing screw to the right.
e. If basel i nes vari es bet ween characters of the same font and size, adjust as follows:
(1) Adj ust scanni ng carriage Ii near beari ngs to zero cl earance.
(2) Ti ght en wayrod hol d down cl amps.
f. If baseline varies bet ween characters of different point size, adjust variator lens vertically.
(1) Renove center panel.

(2) Loosen three I ens lock screws as the following conditions i ndi cate.

LOW

(2) TIGHTEN

HIGH
(a) If basel ines conti nuousl y go hi gher with increasing point size, correct this condition by looseni ng uppernost lens adj ust nent setscrew slightly and tighten lower lens adj ustment setscrew

(b) If basel ines conti nuousl y go lower with increasing point si ze, correct this condition by looseni ng the lower I ens adj ustnent setscrew slightly and tighten the upper lens adjust nent set screw
g. Tighten I ens lock screns.
h. Reinstall top center panel and top left panel.
i. Turn on circuit breaker, then turn on power switch.
j. Perform di agnostic test.

2-20.29 Aline Margin Between Point Sizes,

MDS: 35E, Speci al El ectronic Devi ces Repai rer
TOOLS: 3/32 in. Hex Head Key Wench $5 / 32$ in. Hex Head Key Wench 7/64 in. Hex Head Key Wench

WARN NG

Death or serious injury nay occur from el ectrical shock unl ess power is secured bef ore servi ci ng.

a. Open top left panel.

b. Turn of f power switch, then turn of f composi ng nachi ne breaker.
c. Renove top left panel and center panel.
d. If intersize vertical rules do not line up, nake the following adj ust nents.

(1) Adj ust bal l bearing shaft followers for zero cl earance. They should be loose enough to rotate with the fingers.

(2) Loosen Iens lockscrevs as the following conditions i ndi cate:

(a) If nargin conti nuousl y goes ri ght with increasing point size, correct this condition by looseni ng the si de I ens adj ust nent setscreus and tightening topmost lines adjustnent screw

(b) If margin continuously goes left with increasing point size, correct this condition by loosening the upper lens adj ustment setscrew and tighteni ng the side adj ust ment screw
e. Tighten three Ii nes lockscrevs.
f. Rei nstall top center panel and top left panel.
g. Turn on circuit breaker, then turn on power switch.
h. Close top left panel.
i. Perform di agnostic test.

By Order of the Secretary of the Army:

	JOHN A.WICKHAM, JR. General, United States Army Official:
Chief of Staff	

DONALD J. DELANDRO
Brigadier General, United States Army The Adjutant General

DI STRI BUTI ON:

To be di stributed in accordance with DA Form 12-25A, Operator, Organizational, Di rect Support and General Support Mai ntenance Requirenents for Mapping Equi pnent.

COMMANDER
US ARMY TROOP SUPPORT COMMAND
ATTN: AMSTR-MPS
4300 GOODFELLOW BOULEVARD
ST. LOUIS, MO 63120-1798
ST LOUI, MO 63120.1790

COMMANDER I
US ARMY TROOP SUPPORT COMMAND 1
ATTN: AMSTR-MPS I
4300 GOODFELLOW BOULEVARD
ST. LOUIS, MO 63120-1798 1

COMMANDER
US ARMY TROOP SUPPORT COMMAND
ATTN: AMSTR-MPS
4300 GOODFLLLOW EOULEVARD
sT. LOUIS, MO 63120-1798

The Metric System and Equivalents

Linoar Measure

1 centimeter $=10$ millimeters $=.39$ inch 1 decimeter $=10$ centimeters $=3.94$ inches 1 meter $=10$ decimeters $=39.37$ inches 1 dekameter $=10$ meters $=32.8$ feet 1 hectometer = 10 dekameters $=328.08$ feet 1 kilometer $=10$ hectometers $=3,280.8$ feet

Woights

1 centigram = 10 milligrams $=.15$ grain 1 decigram $=10$ centigrams $=1.54$ grains 1 gram $=10$ decigram $=.035$ ounce 1 dekagram $=10$ grams $=.35$ ounce 1 hectogram = 10 dekagrams $=3.52$ ounces 1 kilogram $=10$ hectograms $=2.2$ pounds 1 quintal $=100$ kilograms $=220.46$ pounds 1 metric ton $=10$ quintals $=1.1$ short tons

Liquid Moasure
1 centiliter $=10$ milliters $=.34$ fl. ounce
1 deciliter $=10$ centiliters $=3.38$ fl. ounces
1 liter $=10$ deciliters $=33.81$ fl. ounces
1 dekaliter $=10$ liters $=2.64$ gallons
1 hectoliter $=10$ dekaliters $=26.42$ gallons
1 kiloliter $=10$ hectoliters $=264.18$ gallons

Square Moasure
1 sq. centimeter $=100$ sq. millimeters $=.155 \mathrm{sq}$. inch 1 sq. decimeter $=100 \mathrm{sq}$. centimeters $=15.5 \mathrm{sq}$. inches 1 sq. meter (centare) $=100$ sq. decimeters $=10.76$ sq. feet 1 sq. dekameter (are) $=100$ sq. meters $=1,076.4$ sq. feet 1 sq . hectometer (hectare) $=100$ sq. dekameters $=2.47$ acres 1 sq. kilometer $=100$ sq. hectometers $=.386$ sq. mile

Cubic Measure
1 cu. centimeter $=1000 \mathrm{cu}$. millimeters $=.06 \mathrm{cu}$. inch 1 cu. decimeter $=1000 \mathrm{cu}$. centimeters $=61.02 \mathrm{cu}$. inches 1 cu. meter $=1000 \mathrm{cu}$. decimeters $=35.31 \mathrm{cu}$. feet

Approximate Conversion Factors

To change	To	Multiply by	To change	To	Multiply by
inches	centimeters	2.540	ounce-inches	newton-meters	. 007062
feet	meters	. 305	centimeters	inches	. 394
yards	meters	. 914	meters	feet	3.280
miles	kilometers	1.609	meters	yards	1.094
square inches	square centimeters	6.451	kilometers	miles	. 621
square feet	square meters	. 093	square centimeters	square inches	. 155
square yards	square meters	. 836	square meters	square feet	10.764
square miles	square kilometers	2.590	square meters	square yards	1.196
acres	square hectometers	. 405	square kilometers	square miles	. 386
cubic feet	cubic meters	. 028	square hectometers	acres	2.471
cubic yards	cubic meters	. 765	cubic meters	cubic feet	35.315
fluid ounces	milliliters	29,573	cubic meters	cubic yards	1.308
pints	liters	. 473	milliliters	fluid ounces	. 034
quarts	liters	. 946	liters	pints	2.113
gallons	liters	3.785	liters	quarts	1.057
ounces	grams	28.349	liters	gallons	. 264
pounds	kilograms	. 454	grams	ounces	. 035
short tons	metric tons	. 907	kilograms	pounds	2.205
pound-feet	newton-meters	1.356	metric tons	short tons	1.102
pound-inches	newton-meters	. 11296			

Temperature (Exact)
${ }^{\circ} \mathbf{F} \quad \begin{aligned} & \text { Fahrenheit } \\ & \\ & \\ & \text { temperature }\end{aligned}$

5/9 (after
subtracting 32)
Celsius $\quad{ }^{\circ} \mathrm{C}$ temperature

